• Salute
  • Possiamo prevenire l’invecchiamento del nostro cervello?

Possiamo prevenire l’invecchiamento del nostro cervello?

di Andrea Tognelli, Farmacista - Firenze

venerdì 11 luglio 2025

   Tutti noi vorremmo conservare il più a lungo possibile la memoria, le capacità di apprendimento, di ragionamento e di linguaggio. In altre parole, evitare il declino cognitivo.

   Praticare regolarmente attività fisica, adottare stili di vita salubri, mantenere in esercizio la mente e stabilire proficue relazioni sociali ecc., sono tutte insostituibili azioni preventive contro il declino cognitivo.

   Negli ultimi anni la scienza ha identificato i vantaggi di determinate molecole, presenti in alcuni alimenti e negli integratori, per preservare la salute del cervello e diminuire il rischio di contrarre malattie croniche dovute all’invecchiamento.

Le vitamine B e C

Nelle persone con declino cognitivo (Nota 1) e malattie neurodegenerative, come l’Alzheimer, le ricerche cliniche hanno rilevato insufficienti livelli ematici di vitamine del gruppo B e di vitamina C (1, 2, 3).

Uno studio pubblicato dalla rivista Nature - scientific report  mette in evidenza queste carenze vitaminiche e la coesistenza con alte concentrazioni ematiche di omocisteina (3).

La cosiddetta iperomocisteinemia è infatti un fattore di rischio per il declino cognitivo, le malattie neurodegenerative, cardiovascolari, renali ecc. (3, 4). 

Questi fenomeni fisiopatologici vengono aggravati dalle alterazioni delle funzioni mitocondriali (Nota 2) (3, 4-15) e dall’ossido-infiammazione (Nota 2) (16-33), che sono strettamente interconnessi all’iperomocisteinemia (3, 11, 15, 34-36).

Nel loro insieme questi meccanismi alimentano un circolo vizioso con la senescenza cellulare (16, 37-43), ed altri processi dell’invecchiamento che vanno a destabilizzare le strutture nervose e vascolari del cervello (16, 37, 44, 45, 46).

Per questo, gli studi clinici sottolineano l’importanza di mantenere adeguati livelli ematici di folati, vitamina B6 e B12, che regolarizzano il metabolismo dell’omocisteina e contribuiscono a ridurre il rischio delle malattie neurodegenerative e cardiovascolari  (47, 48, 49, 50-62).

A queste attività neuroprotettive di vitamina B12 (54, 55), folati / acido folico (54, 56), e vitamina C (16, 37, 63, 64), si aggiungono importanti benefici sulla composizione del microbiota intestinale, che risulta importante anche per le funzioni del cervello e di altri organi (65-72).

Ricordiamo che l’acido folico è la forma più adatta per somministrare i folati attraverso l’integrazione orale (54, 56). I folati sono presenti in verdure a foglia verde, legumi, frattaglie, uova ecc., ma il processo di cottura può distruggere molto la quantità disponibile in questi alimenti (54, 56).

Da questo deriva l’alto rischio di insufficiente apporto / carenza di folati (54, 56). 

Oltre tutto queste vitamine idrosolubili  (65, 67, 73, 74) dimostrano una serie di benefici metabolici (74, 75, 76), cerebrovascolari e cardiovascolari (34), che contribuiscono ulteriormente ad abbassare il rischio di declino cognitivo e delle altre malattie neurodegenerative (54, 55, 56, 73, 78, 79, 80).

Inoltre hanno la capacità di rallentare l’invecchiamento biologico del nostro organismo (81-91).    

Per la loro importanza, viene raccomandato il monitoraggio dei livelli ematici di B12 e di folati nei soggetti a rischio di carenza, es.: vegani, vegetariani, atleti, anziani ecc. (54, 55, 56, 66, 67, 79, 80).

Ulteriori molecole con funzioni neuroprotettive

Con l’obiettivo di combattere l’ossido-infiammazione e la disfunzione mitocondriale contro il declino cognitivo e migliorare la performance mentale, risultano attive ulteriori molecole (11, 73, 92).

Vitamine liposolubili

Oltre alle già citate vitamine B e C, sono di particolare importanza le vitamine E e D, ed i carotenoidi precursori di vitamina A (4, 11, 48, 92-95).

Queste vitamine liposolubili contribuiscono a mantenere, ed aumentare le difese antiossidanti dell’organismo, e svolgere altre funzioni indispensabili per le strutture cerebrali e dell’intero organismo (4, 11, 48, 92-95).

Negli studi clinici queste vitamine hanno dimostrato di ridurre l’insorgenza e la progressione dei disturbi neurocognitivi (30, 73, 92, 96, 97, 98), migliorare la composizione del microbiota intestinale e rallentare l’invecchiamento biologico (86, 92, 99-114).

Inoltre, vitamina A, C, D, E, con altri antiossidanti glutatione, coenzima Q10, polifenoli, svolgono significativi benefici anche per conservare la salute orale, di estrema importanza per la prevenzione delle malattie neurodegenerative (120-126).

Polifenoli

I polifenoli come  curcumina, quercetina, resveratrolo ecc. (11, 13, 92, 95, 127-131) sono una classe di molecole vegetali molto vasta, ed attiva contro vari meccanismi dell’invecchiamento dell’organismo (11, 92, 99, 132-139).

Nei numerosi studi dedicati, il resveratrolo ha dimostrato significative attività neuroprotettive e promettenti risultati clinici per prevenire e rallentare il declino cognitivo (11, 13, 14, 15, 92, 95, 129, 140-151).

Per il resveratrolo sono documentati vari benefici:

- rallenta l’invecchiamento biologico (133, 150, 151, 152);

- migliora le attività metaboliche e cardiovascolari (34, 153-158);

- attenua i disturbi collegati al declino degli estrogeni dopo la menopausa, inclusi i problemi cognitivi (43, 150, 151, 153, 159, 160);

- previene la disbiosi intestinale (34, 66,  76, 77, 153, 154, 159, 161-164);

- contribuisce a equilibrare il ritmo sonno-veglia, di estrema importanza per la cognitività (165).

Coenzima Q10

Bassi livelli di questo potente antiossidante/antinfiammatorio sono associati in modo significativo al declino delle funzioni cognitive (166).

L’integrazione mirata di coenzima Q10 incrementa in modo significativo le difese antiossidanti endogene del nostro organismo, che tendono a diminuire progressivamente dopo i 30 anni d’età (11, 167).

Il coenzima Q10 dimostra promettenti effetti su vari disturbi neurologici e della cognitività (13, 14, 15, 95, 166-172), oltre alle numerose prove cliniche sulle problematiche spesso coesistenti, come depressione, stanchezza cronica (173), fibromialgia (166, 169, 174, 175), ed i disturbi metabolici e cardiovascolari (11, 34, 73-77, 176, 177, 178).

Nell’uomo, il coenzima Q10 protegge e normalizza significativamente la sintesi del testosterone nelle cellule Leydig (179).

Un’effetto svolto anche dai polifenoli, tramite il miglioramento di vari parametri metabolici che possono abbassare i livelli di testosterone, come  avviene in caso di sovrappeso/obesità, diabete ecc.. (76, 77, 180).

I ridotti livelli di testosterone, infatti, possono compromettere anche la prestazione cognitiva, come la memoria e le funzioni esecutive, oltre a generare vari disturbi generali (181-185).

Altre sostanze ad azione neuroprotettiva  

Gli Acidi grassi omega 3 all’azione antiossidante / antinfiammatoria associano importanti benefici per il microbiota intestinale (109, 186), e per rallentare l’invecchiamento biologico dell’organismo (48, 73, 92, 104, 129, 187-191).

Recenti studi confermano il significativo contributo degli acidi grassi omega 3 per ridurre il rischio di declino cognitivo (192, 193, 194) e per la relativa gestione clinica (195, 196-201). 

La Creatina (73, 202, 203, 204) e la carnitina (73, 205) hanno interessanti effetti sulla performance cognitiva (73, 202, 203, 204). Sono entrambe molecole a rischio di insufficiente apporto per le persone che non consumano o limitano gli alimenti di origine animale (73, 202-205). 

Recenti studi documentano il contributo del magnesio (73, 206, 207, 208) e della melatonina (73, 209), per citare solo alcune delle principali molecole con effetti neuroprotettivi.

Ricerca e innovazione Mitochon srl

Da alcuni anni la ricerca dell’azienda italiana Mitochon srl https://www.mitochon.it/ ha creato una intera linea di prodotti per l’antiaging cutaneo e sistemico, efficaci e sicuri.

L’integratore orosolubile Mitofast bit.ly/3VUlGkS permette di (210, 211):

   incrementare in modo significativo le difese antiossidanti dell’organismo es.: coenzima Q10 (+184%), glutatione totale (+53%) e vitamina E (+ 11%);

   ridurre i livelli plasmatici di omocisteina (-13%);

   ottenere concreti risultati antiaging e migliorare il benessere generale percepito, dopo almeno 4 settimane di assunzione;

   contribuire a prevenire ed attenuare i vari disturbi clinici dipendenti dall’età;

   essere associato all’integratore liquido Mitofast B12  bit.ly/4d5ll4P , per un’azione sinergica con la vitamina B12 (54, 55, 56)

Una bustina monodose di Mitofast® bit.ly/3VUlGkS contiene:

- Resveratrolo (40 mg);

- Coenzima Q10 (100 mg);

- Acido folico (400 mcg);

- Vitamina C (20 mg); 

- N-acetilglucosamina (150 mg) per promuovere la sintesi di acido ialuronico, indispensabile per il trofismo cutaneo (212, 213);

- N-acetilcisteina (150 mg) per incrementare le concentrazioni di glutatione, il principale antiossidante del corpo umano (210, 211, 214, 215).

La N-acetilcisteina (214, 215) svolge anche attività neuroprotettive, oltre a migliorare i parametri metabolici, vascolari, ed delle funzioni cognitive (34, 37, 95, 216, 217, 218, 219). 

Conclusioni

   Gli effetti trasversali di specifici antiossidanti / antinfiammatorie, derivanti dall’alimentazione e da specifici integratori, possono contribuire a conservare la performance cognitiva e rallentare l’invecchiamento biologico.

   I benefici di queste molecole devono essere associati agli insostituibili vantaggi dell’attività fisica e degli stili di vita (223), riconosciuti come  fondamentali per preservare la memoria, le altre funzioni cognitive e la salute generale.

   Mitofast bit.ly/3VUlGkS permette di assumere facilmente (210, 220, 221) appropriate quantità di ingredienti attivi di provata efficacia contro l’invecchiamento, ed i disturbi collegati (210), inclusi quelli della cognitività (224).

Nota 1 (1, 2)

Il declino cognitivo lieve si manifesta con uno o più dei seguenti sintomi:

perdita di memoria, alterazioni delle funzioni esecutive, difficoltà ad intraprendere azioni o compiti, rallentamento del pensiero, cambiamenti di umore e di personalità, deficit del linguaggio.

Nel declino cognitivo lieve i sintomi non sono tali da ridurre le capacità di svolgere i compiti quotidiani e mantenere l’indipendenza personale, che sono invece compromessi nelle forme più gravi di demenza.

Il declino cognitivo lieve espone ad un maggior rischio di sviluppare forme più gravi di perdita della cognitività.

Oltre all’invecchiamento dell’organismo, i principali fattori di rischio comprendono: predisposizione genetica; malattie croniche, es.: cardiometaboliche, respiratorie, osteoarticolari; disturbi del sonno e dell’umore; malattie neurologiche; carenze vitaminiche; trattamento polifarmacologici; abitudini di vita, es.: sedentarietà, eccessivo consumo di alcol ecc..  

Nota 2 (3, 4-33)

Metabolismo cerebrale - disfunzione mitocondriale - stress ossidativo - infiammazione cronica

Il cervello rappresenta solo il 2% del peso corporeo totale e consuma il 20% del consumo totale di ossigeno, il 25% del consumo totale di glucosio corporeo.

Queste grandi quantità di ossigeno e glucosio consumate dal cervello sono necessarie per produrre l'energia necessaria ai neuroni per ripristinare i loro gradienti elettrochimici, che vengono dissipati durante la neurotrasmissione.

I neuroni assorbono il 70% dell’energia consumata dal cervello, ed il restante quantitativo viene ripartito tra astrociti, microglia ecc..

Di conseguenza il deterioramento multicausale delle funzioni mitocondriale costituisce un fattore di rischio che predispone all’insorgenza, ed alla progressione dei disturbi neurodegenerativi.

La disfunzione mitocondriale risulta infatti presente in modo precoce nel declino cognitivo, ancora prima dell’instaurarsi dell’accumulo di amiloide e dei grovigli microfibrillari nei neuroni.

Lo stress ossidativo e le alterazioni ossidative di proteiche e lipidiche sono facilitate anche dall’abbassamento delle difese antiossidanti endogene che, nel loro insieme, innescano la progressione dell’infiammazione cronica (inflammaging) ed altre alterazioni riconducibili agli hallmarks of aging.

Oltre ai neuroni, questi eventi danneggiano gli astrociti e le cellule dei vasi sanguigni cerebrali, in primo luogo per il ridotto apporto energetico causato dai danni mitocondriali e l’aumenta produzione di specie reattive dell’ossigeno.

Anche per i disturbi neurodegenerativi si consolidano le strategie che mirano a proteggere e rigenerare le funzioni mitocondriali a fini preventivi e terapeutici.

Bibliografia

1. Randhawa SS, Varghese D. Geriatric Evaluation and Treatment of Age-Related Cognitive Decline. [Updated 2023 Sep 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:https://www.ncbi.nlm.nih.gov/books/NBK580536/

2. Anand S, Schoo C. Mild Cognitive Impairment. [Updated 2024 Jan 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:https://www.ncbi.nlm.nih.gov/books/NBK599514/

3. Zhang C, Hu Y, Cao X, Deng Y, Wang Y, Guan M, Wu X, Jiang H. Lower water-soluble vitamins and higher homocysteine are associated with neurodegenerative diseases. Sci Rep. 2025 May 29;15(1):18866. doi: 10.1038/s41598-025-03859-y. 

4. He X, Lin Y, Wu X, Li M, Zhong T, Zhang Y, Weng X. Vitamin C intake and cognitive function in older U.S. adults: nonlinear dose-response associations and effect modification by smoking status. Front Nutr. 2025 Jun 4;12:1585863. doi: 10.3389/fnut.2025.1585863. 

4. Yang, H.-M. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 202514, 276. https://doi.org/10.3390/cells14040276

5. Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol. 2025 Apr 21:169161. doi: 10.1016/j.jmb.2025.169161. 

6. Choi J, Beroncal EL, Chernega T, Brooks HJ, Kennedy JL, Fisher CE, Flint AJ, Herrmann N, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Rajji TK, Andreazza AC; PACt-MD Study Group. Exploring mitochondrial blood-based and genetic markers in older adults with mild cognitive impairment and remitted major depressive disorder. Transl Psychiatry. 2024 Oct 29;14(1):457. doi: 10.1038/s41398-024-03155-9.

7. Verma H, Gangwar P, Yadav A, Yadav B, Rao R, Kaur S, Kumar P, Dhiman M, Taglialatela G, Mantha AK. Understanding the neuronal synapse and challenges associated with the mitochondrial dysfunction in mild cognitive impairment and Alzheimer's disease. Mitochondrion. 2023 Nov;73:19-29. doi: 10.1016/j.mito.2023.09.003.

8. H. MuraliMahadevan, A. Hashemiaghdam, G. Ashrafi, A. B. Harbauer, Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv. Biology 2021, 5, 2100663. https://doi.org/10.1002/adbi.202100663

9. López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol. 2023 Aug;81:102747. doi: 10.1016/j.conb.2023.102747.

10. Samanta S, Akhter F, Xue R, Sosunov AA, Wu L, Chen D, Arancio O, Yan SF, Yan SS. Synaptic mitochondria glycation contributes to mitochondrial stress and cognitive dysfunction. Brain. 2025 Jan 7;148(1):262-275. doi: 10.1093/brain/awae229. 

11. Rostagno, A.; Ghiso, J. Alzheimer’s Disease Pathogenic Mechanisms: Linking Redox Homeostasis and Mitochondria-Associated Metabolic Pathways Through Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). Antioxidants 202514, 812. https://doi.org/10.3390/antiox14070812

12. Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis. 2025 Mar;1871(3):167617. doi: 10.1016/j.bbadis.2024.167617.

xx. Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion. 2025 May;82:102022. doi: 10.1016/j.mito.2025.102022. 

13. D’Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer's disease. Ageing Res Rev. 2025 May;107:102713. doi: 10.1016/j.arr.2025.102713.

14. Wang S, Liao Z, Zhang Q, Han X, Liu C, Wang J. Mitochondrial dysfunction in Alzheimer's disease: a key frontier for future targeted therapies. Front Immunol. 2025 Jan 14;15:1484373. doi: 10.3389/fimmu.2024.1484373.

15. Zhang X, Gao Y, Zhang S, Wang Y, Pei X, Chen Y, Zhang J, Zhang Y, Du Y, Hao S, Wang Y, Ni T. Mitochondrial dysfunction in the regulation of aging and aging-related diseases. Cell Commun Signal. 2025 Jun 19;23(1):290. doi: 10.1186/s12964-025-02308-7.

16. Mini-Review Pelle - Infiammazione cronica 2025 https://www.mitochon.it/la-pelle-come-scudo-contro-linfiammazione-cronica-dellorganismo/?v=0d149b90e739

17. Zhang J, Xia B, Wakefield JS, Elias PM, Wang X. The Role and Implications of Epidermal Dysfunction in the Pathogenesis of Inflammaging. J Invest Dermatol. 2025 Jan 13:S0022-202X(24)03034-3. doi: 10.1016/j.jid.2024.09.025. 

18. Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev. 2024 Nov;101:102535. doi: 10.1016/j.arr.2024.102535.

19. Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci. 2024 Sep 30;25(19):10535. doi: 10.3390/ijms251910535. 

20. Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev. 2024 Jul;162:105724. doi: 10.1016/j.neubiorev.2024.105724.

21. Childs R, Karamacoska D, Lim CK, Steiner-Lim GZ. "Let's talk about sex, inflammaging, and cognition, baby": A meta-analysis and meta-regression of 106 case-control studies on mild cognitive impairment and Alzheimer's disease. Brain Behav Immun Health. 2024 Jul 20;40:100819. doi: 10.1016/j.bbih.2024.100819. 

22. Franco AC, Martini H, Victorelli S, Lagnado AB, Wyles SP, Rowsey JL, Pirius N, Woo SH, Costa DG, Chaib S, Tullius SG, Tchkonia T, Kirkland JL, Khosla S, Jurk D, Cavadas C, Passos JF. Senescent cell transplantation into the skin induces age-related peripheral dysfunction and cognitive decline. Aging Cell. 2025 Jan;24(1):e14340. doi: 10.1111/acel.14340.

23. Arosio B, Rossi PD, Ferri E, Consorti E, Ciccone S, Lucchi TA, Montano N. The inflammatory profiling in a cohort of older patients suffering from cognitive decline and dementia. Exp Gerontol. 2025 Mar;201:112692. doi: 10.1016/j.exger.2025.112692.

24. Qin Q, Xia X, Qu J, Guan Z, Yin Y, Chang J, Yu C, Zhang T, Tang Y. Blood biomarkers of amyloid and tau pathologies, brain degeneration, inflammation, and oxidative stress in early- and late-onset Alzheimer's disease. J Alzheimers Dis. 2025 May 8:13872877251340955. doi: 10.1177/13872877251340955. 

25. Zheng Y, Yu Y, Gao L, Yu M, Jiang L, Zhu Q. Association of red blood cell count, hemoglobin concentration, and inflammatory indices with cognitive impairment severity in Alzheimer's disease. Sci Rep. 2025 May 20;15(1):17425. doi: 10.1038/s41598-025-02468-z.

26. Tosatti JAG, Pereira JD, Loures CMG, Fraga VG, Magalhães CA, Eugênio RDAC, Guimarães HC, Resende EPF, de Souza LC, Carvalho MDG, Caramelli P, Gomes KB. Complete blood count and systemic inflammation indices in individuals with Alzheimer's disease: A case-control study. J Clin Neurosci. 2025 Feb;132:111011. doi: 10.1016/j.jocn.2024.111011.

27. Öztürk D, Midi I, Alaylıoğlu M, Tuncer EN, Gezen-Ak D, Dursun E, Doğan B. Serum and Saliva Biomolecules in Periodontitis Patients with and without Alzheimer's Disease. Niger J Clin Pract. 2025 Mar 1;28(3):409-416. doi: 10.4103/njcp.njcp_254_24.

28. Ghanem AS, Móré M, Nagy AC. Analysis of Molecular Aspects of Periodontitis as a Risk Factor for Neurodegenerative Diseases: A Single-Center 10-Year Retrospective Cohort Study. Int J Mol Sci. 2025 Mar 7;26(6):2382. doi: 10.3390/ijms26062382.

29. Spina, E.; Ferrari, R.R.; Pellegrini, E.; Colombo, M.; Poloni, T.E.; Guaita, A.; Davin, A. Mitochondrial Alterations, Oxidative Stress, and Therapeutic Implications in Alzheimer’s Disease: A Narrative Review. Cells 202514, 229. https://doi.org/10.3390/cells14030229

30. Jin Y, Lin H, Ye Z, Wang H, Liu Y, Qiu W, Liu C. Associations of oxidative balance score and cognition in US older adults: A cross-sectional study of National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. J Alzheimers Dis Rep. 2025 Feb 9;9:25424823241300354. doi: 10.1177/25424823241300354.

31. Chong, Z.Z.; Souayah, N. Oxidative Stress: Pathological Driver in Chronic Neurodegenerative Diseases. Antioxidants 202514, 696. https://doi.org/10.3390/antiox14060696

32. Madrer N, Perera ND, Uccelli NA, Abbondanza A, Andersen JV, Carsana EV, Demmings MD, Fernandez RF, de Fragas MG, Gbadamosi I, Kulshrestha D, Lima-Filho RAS, Marian OC, Markussen KH, McGovern AJ, Neal ES, Sarkar S, Šimončičová E, Soto-Verdugo J, Yandiev S, Fernández-Moncada I. Neural Metabolic Networks: Key Elements of Healthy Brain Function. J Neurochem. 2025 Jun;169(6):e70084. doi: 10.1111/jnc.70084.

33. Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther. 2024 Oct;262:108710. doi: 10.1016/j.pharmthera.2024.108710. 

34. Mini-Review Antiaging cardiovascolare 2025 https://www.mitochon.it/antiaging-cardiovascolare/?v=0d149b90e739

35. Tarcau BM, Negru A, Buzle AM, Ghitea TC, Marian E. Impact of Genetic Mutations in Hyperhomocysteinemia and Metabolic Syndrome on Physiological Parameters and Quality of Life in Healthy Individuals. In Vivo. 2025 May-Jun;39(3):1703-1718. doi: 10.21873/invivo.13972.

36. Markus HS, Joutel A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment. Physiol Rev. 2025 Jul 1;105(3):1075-1171. doi: 10.1152/physrev.00028.2024. 

37. Mini-Review Infiammazione Cronica - Antiossidanti https://www.mitochon.it/infiammazione-cronica-attualita-sul-ruolo-di-specifici-antiossidanti-per-combatterla-a-livello-cutaneo-e-sistemico/

38. Wang X, Wen Q, Li Y, Zhu H, Zhang F, Li S, Zhan L and Li J (2025) Systemic inflammation markers (SII and SIRI) as predictors of cognitive performance: evidence from NHANES 2011–2014. Front. Neurol. 16:1527302. doi: 10.3389/fneur.2025.1527302

39. Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol. 2024 Aug;98(8):2393-2408. doi: 10.1007/s00204-024-03768-5. 

40. Mielke MM, Fielding RA, Atkinson EJ, Aversa Z, Schafer MJ, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Biomarkers of cellular senescence predict risk of mild cognitive impairment: Results from the lifestyle interventions for elders (LIFE) study. J Nutr Health Aging. 2025 May;29(5):100529. doi: 10.1016/j.jnha.2025.100529.

41. Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev. 2024 Nov;101:102533. doi: 10.1016/j.arr.2024.102533.

42. Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener. 2024 Nov 20;13(1):55. doi: 10.1186/s40035-024-00447-4.

43. Foster TC, Kumar A. Sex, senescence, senolytics, and cognition. Front Aging Neurosci. 2025 Mar 4;17:1555872. doi: 10.3389/fnagi.2025.1555872.

44. Carr L, Mustafa S, Collins-Praino LE. The Hallmarks of Ageing in Microglia. Cell Mol Neurobiol. 2025 May 19;45(1):45. doi: 10.1007/s10571-025-01564-y. 

45. Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell. 2024 Jan;23(1):e13942. https://onlinelibrary.wiley.com/doi/10.1111/acel.13942

46. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001

47. Zuliani G, Brombo G, Polastri M, Romagnoli T, Mola G, Riccetti R, Seripa D, Trentini A, Cervellati C. High plasma homocysteine levels predict the progression from mild cognitive impairment to dementia. Neurochem Int. 2024 Jul;177:105763. doi: 10.1016/j.neuint.2024.105763.

48. Gualtieri, P.; Frank, G.; Cianci, R.; Ciancarella, L.; Romano, L.; Ortoman, M.; Bigioni, G.; Nicoletti, F.; Falco, M.I.; La Placa, G.; et al. Exploring the Efficacy and Safety of Nutritional Supplements in Alzheimer’s Disease. Nutrients 202517, 922. https://doi.org/10.3390/nu17050922

49. Holmes HE, Valentin RE, Jernerén F, de Jager Loots CA, Refsum H, Smith AD, Guarente L, Dellinger RW, Sampson D; Alzheimer's Disease Neuroimaging Initiative. Elevated homocysteine is associated with increased rates of epigenetic aging in a population with mild cognitive impairment. Aging Cell. 2024 Oct;23(10):e14255. doi: 10.1111/acel.14255. 

50. Lin WZ, Yu D, Xiong LY, Zebarth J, Wang R, Fischer CE, Rajji TK, Tang-Wai DF, Tartaglia C, Saposnik G, Swartz RH, Grimes DA, Lang AE, Hegele RA, Farhan S, Ramirez J, Symons S, Goubran M, Binns MA, Lou W, Dixon RA, Orange JB, Roberts AC, Troyer AK, Zetterberg H, Herrmann N, Rabin JS, MacIntosh BJ, Masellis M, Lanctôt KL, Black SE, Swardfager W; ONDRI Investigators. Homocysteine, neurodegenerative biomarkers, and APOE ε4 in neurodegenerative diseases. Alzheimers Dement. 2025 Jan;21(1):e14376. doi: 10.1002/alz.14376.

51. Poulidou, V.; Liampas, I.; Arnaoutoglou, M.; Dardiotis, E.; Siokas, V. The Imbalance of Homocysteine, Vitamin B12 and Folic Acid in Parkinson Plus Syndromes: A Review beyond Parkinson Disease. Biomolecules 202414, 1213. https://doi.org/10.3390/biom14101213

52. Rekik A, Santoro C, Poplawska-Domaszewicz K, Qamar MA, Batzu L, Landolfo S, Rota S, Falup-Pecurariu C, Murasan I, Chaudhuri KR. Parkinson's disease and vitamins: a focus on vitamin B12. J Neural Transm (Vienna). 2024 Dec;131(12):1495-1509. doi: 10.1007/s00702-024-02769-z.

53. Wallensten J, Wachtler C, Bogdanovic N, Olofsson A, Kivipelto M, Jönsson L, Petrovic P, Carlsson AC. Machine learning to detect Alzheimer's disease with data on drugs and diagnoses. J Prev Alzheimers Dis. 2025 May;12(5):100115. doi: 10.1016/j.tjpad.2025.100115.

54. Mini-Review Vitamina B12 - Acido Folico https://www.mitochon.it/vitamina-b12-e-acido-folico-cosa-ce-di-nuovo-parte-1/

55. Mini-Review Vitamina B12 https://www.mitochon.it/vitamina-b12-nelle-strategie-antiaging/

56. Mini-Review Acido Folico https://www.mitochon.it/acido-folico-dalla-clinica-allantiaging-attualita-2024/

57. Chen Q, Huang J, Shi X, Peng Y, Chen A, Huang L, Zhang Y, Chen X. Associations between dietary B vitamin intakes and cognitive function among elderly individuals: An observational study. Nutrition. 2025 Jun;134:112716. doi: 10.1016/j.nut.2025.112716.

58. Zhao Y, Ge Y, Zhang Z, Tan C, Lu Y, Guo X, Tian Y, Feng X, Wu Y, Li S, Cui H. The effects of methyl nutrients on cognition and one carbon metabolism in older adults with mild cognitive impairment, A systematic review and meta-analysis. Geriatr Nurs. 2025 May-Jun;63:395-406. doi: 10.1016/j.gerinurse.2025.03.038.

59. Wang M, Fang M, Zang W. Effects of folic acid supplementation on cognitive function and inflammation in elderly patients with mild cognitive impairment: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr. 2024 Nov;126:105540. doi: 10.1016/j.archger.2024.105540.

60. Zhang L, Chen X, Chen Y, Yan J, Huang G, Li W. A Comparative Study Evaluating the Effectiveness of Folate-Based B Vitamin Intervention on Cognitive Function of Older Adults under Mandatory Folic Acid Fortification Policy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2024 Jul 10;16(14):2199. doi: 10.3390/nu16142199.

61. Ekundayo BE, Adewale OB, Obafemi TO. Neuroprotective Effects of Folic Acid: A Review. J Diet Suppl. 2025;22(2):345-363. doi: 10.1080/19390211.2024.2436842.

62. Liao Y, Zhang H, Zhang Y, Kan CN, Chia RSL, Chai YL, Cheng CY, Chen C, Xu X. The protective effect of vitamin B12 on neuropsychiatric symptoms in dementia-free older adults in a multi-ethnic population. Clin Nutr. 2025 Jan;44:25-32. doi: 10.1016/j.clnu.2024.11.037. 

63. Mini-Review Vitamina C https://www.mitochon.it/vitamina-c-il-contributo-per-lanti-aging-cutaneo/

64. Mini-Review Precursori acido ascorbico https://www.mitochon.it/precursori-dellacido-ascorbico-per-massimizzare-lattivita-antiaging-per-via-topica-e-locale-ulteriori-acquisizioni-2024/

65. Agostini D, Bartolacci A, Rotondo R, De Pandis MF, Battistelli M, Micucci M, Potenza L, Polidori E, Ferrini F, Sisti D, Pegreffi F, Pazienza V, Virgili E, Stocchi V, Donati Zeppa S. Homocysteine, Nutrition, and Gut Microbiota: A Comprehensive Review of Current Evidence and Insights. Nutrients. 2025 Apr 11;17(8):1325. doi: 10.3390/nu17081325.

66. Mini-Review Vitamine complesso B - microbiota https://www.mitochon.it/le-vitamine-del-gruppo-b-cosa-ce-di-nuovo-parte-2/

67. An Y, Cao Z, Du Y, Xu G, Wang J, Zheng J, Lu Y. Bidirectional Two-Sample, Two-Step Mendelian Randomisation Study Reveals Mediating Role of Gut Microbiota Between Vitamin B Supplementation and Alzheimer's Disease. Nutrients. 2024 Nov 18;16(22):3929. doi: 10.3390/nu16223929.

68. Olejnik P, Golenia A, Małyszko J. The Potential Role of Microbiota in Age-Related Cognitive Decline: A Narrative Review of the Underlying Molecular Mechanisms. Int J Mol Sci. 2025 Feb 13;26(4):1590. doi: 10.3390/ijms26041590.

69. Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int J Mol Sci. 2025 Feb 6;26(3):1373. doi: 10.3390/ijms26031373.

70. Escalante J, Artaiz O, Diwakarla S, McQuade RM. Leaky gut in systemic inflammation: exploring the link between gastrointestinal disorders and age-related diseases. Geroscience. 2025 Feb;47(1):1-22. doi: 10.1007/s11357-024-01451-2. 

71. Yang J, Liang J, Hu N, He N, Liu B, Liu G, Qin Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer's Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther. 2024 Oct;30(10):e70091. doi: 10.1111/cns.70091.

72. Chen Q, Fan R, Song L, Wang S, You M, Cai M, Wu Y, Li Y, Xu M. Association of Methyl Donor Nutrients' Dietary Intake and Cognitive Impairment in the Elderly Based on the Intestinal Microbiome. Nutrients. 2024 Jun 28;16(13):2061. doi: 10.3390/nu16132061. 

73. Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J. 2024 Apr 18;15(2):163-205. doi: 10.1007/s13167-024-00358-4.

74. Mini - Review Benessere e salute mitocodriale https://www.mitochon.it/obiettivo-benessere-partendo-dalla-salute-dei-mitocondri/

75. Mini-Review Antiaging muscolare 2025 https://www.mitochon.it/antiaging-muscolare/?v=0d149b90e739

76. Mini-Review Sindrome Metabolica https://www.mitochon.it/sindrome-metabolica-2024-dalle-origini-molecolari-al-ruolo-dei-nutraceutici/

77. Mini-Review Steatosi Epatica https://www.mitochon.it/steatosi-epatica-novita-sui-meccanismi-dinsorgenza-ed-il-contributo-degli-antiossidanti/

78. Jiménez-Ruiz A, Aguilar-Fuentes V, Becerra-Aguiar NN, Roque-Sanchez I, Ruiz-Sandoval JL. Vascular cognitive impairment and dementia: a narrative review. Dement Neuropsychol. 2024 Sep 23;18:e20230116. doi: 10.1590/1980-5764-DN-2023-0116. 

79. Özdemir S, Demirtaş S. Are vitamin B-12 measurements adequate for evaluating its deficiency in individuals? Asia Pac J Clin Nutr. 2025 Apr;34(2):232-239. doi: 10.6133/apjcn.202504_34(2).0010. 

80. Beaudry-Richard A, Abdelhak A, Saloner R, Sacco S, Montes SC, Oertel FC, Cordano C, Jabassini N, Ananth K, Gomez A, Keihani A, Chapman M, Javvadi S, Saha S, Staffaroni A, Songster C, Warren M, Boscardin JW, Kramer J, Miller B, Miller JW, Green R, Green AJ. Vitamin B12 Levels Association with Functional and Structural Biomarkers of Central Nervous System Injury in Older Adults. Ann Neurol. 2025 Jun;97(6):1190-1204. doi: 10.1002/ana.27200.

81. Simonenko SY, Bogdanova DA, Kuldyushev NA. Emerging Roles of Vitamin B12 in Aging and Inflammation. Int J Mol Sci. 2024 May 6;25(9):5044. doi: 10.3390/ijms25095044.

82. Tang F, Qiu H, Liu Y, Guo J, Huang Z, Fang S, Zhang Y, Wang S. Decreased cobalamin sensitivity and biological aging acceleration in the general population. J Nutr Health Aging. 2024 Jul;28(7):100262. doi: 10.1016/j.jnha.2024.100262.

83. Liu X, Wang Y. Association between oxidative balance score and methylation cycle biomarkers in US adults: insights from the national health and nutrition examination survey. Front Nutr. 2025 Apr 28;12:1526025. doi: 10.3389/fnut.2025.1526025.

84. Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. Epigenomes. 2024 Oct 9;8(4):38. doi: 10.3390/epigenomes8040038.

85. Mohd Murshid N, Aminullah Lubis F, Makpol S. Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases. Cell Mol Neurobiol. 2022 Apr;42(3):577-595. doi: 10.1007/s10571-020-00979-z. 

86. Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr. 2024 Nov;120(5):1143-1155. doi: 10.1016/j.ajcnut.2024.08.033.

87. Li YS, Gong XJ, Du WJ, Li Y, He DY, Yao J, Bai C. Inverted U-shaped relationship between serum vitamin B12 and α-Klotho levels in US adults: a cross-sectional study. Front Nutr. 2024 Oct 23;11:1473196. doi: 10.3389/fnut.2024.1473196. 

88. Bozack AK, Khodasevich D, Nwanaji-Enwerem JC, Gladish N, Shen H, Daredia S, Gamble M, Needham BL, Rehkopf DH, Cardenas A. One-carbon metabolism-related compounds are associated with epigenetic aging biomarkers: results from the cross-sectional National Health and Nutrition Examination Survey 1999-2002. Am J Clin Nutr. 2025 May 31:S0002-9165(25)00317-X. doi: 10.1016/j.ajcnut.2025.05.029. 

89. Chun S, Kim MJ, Shin PK, Park SJ, Yang HJ, Kim JH, Lee KH, Hong M, Kwon DY, Friso S, Lee HJ, Kim MS, Choi SW. Traditional Korean diet high in one-carbon nutrients increases global DNA methylation: implication for epigenetic diet. Eur J Nutr. 2024 Oct;63(7):2511-2519. doi: 10.1007/s00394-024-03442-7.

90. García-García I, Grisotto G, Heini A, Gibertoni S, Nusslé S, Gonseth Nusslé S, Donica O. Examining nutrition strategies to influence DNA methylation and epigenetic clocks: a systematic review of clinical trials. Front Aging. 2024 Jul 15;5:1417625. doi: 10.3389/fragi.2024.1417625.

91. Zhang J, Wang XY, Yang S, Xie X, Pan SJ, Xu XQ, Li Y. Relationship of dietary natural folate and synthetic folic acid co-exposure patterns with biological aging: findings from NHANES 2003-2018. Food Funct. 2024 Sep 30;15(19):10121-10135. doi: 10.1039/d4fo01241k. 

92. Ristori, S.; Bertoni, G.; Bientinesi, E.; Monti, D. The Role of Nutraceuticals and Functional Foods in Mitigating Cellular Senescence and Its Related Aspects: A Key Strategy for Delaying or Preventing Aging and Neurodegenerative Disorders. Nutrients 202517, 1837. https://doi.org/10.3390/nu17111837

93. Sheng LT, Jiang YW, Feng L, Pan A, Koh WP. Dietary Total Antioxidant Capacity and Late-Life Cognitive Impairment: The Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci. 2022 Mar 3;77(3):561-569. doi: 10.1093/gerona/glab100.

94. Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol. 2025 Jun;62(6):6785-6810. doi: 10.1007/s12035-024-04468-y. 

95. Alrouji, M.; Alshammari, M.S.; Tasqeeruddin, S.; Shamsi, A. Interplay Between Aging and Tau Pathology in Alzheimer’s Disease: Mechanisms and Translational Perspectives. Antioxidants 202514, 774. https://doi.org/10.3390/antiox14070774

96. Peng M, Liu Y, Jia X, Wu Y, Zou X, Ke M, Cai K, Zhang L, Lu D, Xu A. Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011-2014. J Nutr Health Aging. 2023;27(6):479-486. doi: 10.1007/s12603-023-1934-9.

97. Kujawska A, Kujawski S, Zupkauskienė J, Husejko J, Hajec W, Robertson CE, Miglis MG, McMahon N, Dani M, Simões JA, Zalewski P, Kędziora-Kornatowska K. Prevalence, co-existence, and factors related to a change in geriatric giant syndromes over 2 years: results of the Second Wave of Cognition of Older People, Education, Recreational Activities, NutritIon, Comorbidities, fUnctional Capacity Studies (COPERNICUS). Psychogeriatrics. 2025 May;25(3):e70018. doi: 10.1111/psyg.70018.

98. He, M.; Zou, Y.; Su, D.; Zhao, D.; Zhou, M.; Xu, P.; Zhang, R. Relationship of Composite Dietary Antioxidant Index vs. Alcohol Consumption with Mild Cognitive Impairment in the Elderly. Nutrients 202517, 2111. https://doi.org/10.3390/nu17132111

99. McGee KC, Sullivan J, Hazeldine J, Schmunk LJ, Martin-Herranz DE, Jackson T, Lord JM. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. Geroscience. 2024 Oct;46(5):4333-4347. doi: 10.1007/s11357-024-01138-8.

100. Keshawarz A, Joehanes R, Ma J, Lee GY, Costeira R, Tsai PC, Masachs OM, Bell JT, Wilson R, Thorand B, Winkelmann J, Peters A, Linseisen J, Waldenberger M, Lehtimäki T, Mishra PP, Kähönen M, Raitakari O, Helminen M, Wang CA, Melton PE, Huang RC, Pennell CE, O'Sullivan TA, Ochoa-Rosales C, Voortman T, van Meurs JBJ, Young KL, Graff M, Wang Y, Kiel DP, Smith CE, Jacques PF, Levy D. Dietary and supplemental intake of vitamins C and E is associated with altered DNA methylation in an epigenome-wide association study meta-analysis. Epigenetics. 2023 Dec;18(1):2211361. doi: 10.1080/15592294.2023.2211361.

101. Kim MS, Kim TH. Anti-Aging Tests for Middle Aged Women. J Menopausal Med. 2024 Dec;30(3):164-169. doi: 10.6118/jmm.24012.

102. Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel). 2025 Feb 5;15(2):238. doi: 10.3390/life15020238. 

103. Izadi M, Sadri N, Abdi A, Raeis Zadeh MM, Sadatipour S, Baghdadi G, Jalaei D, Tahmasebi S. Harnessing the fundamental roles of vitamins: the potent anti-oxidants in longevity. Biogerontology. 2025 Feb 7;26(2):58. doi: 10.1007/s10522-025-10202-5.

104. Bischoff-Ferrari HA, Gängler S, Wieczorek M, Belsky DW, Ryan J, Kressig RW, Stähelin HB, Theiler R, Dawson-Hughes B, Rizzoli R, Vellas B, Rouch L, Guyonnet S, Egli A, Orav EJ, Willett W, Horvath S. Individual and additive effects of vitamin D, omega-3 and exercise on DNA methylation clocks of biological aging in older adults from the DO-HEALTH trial. Nat Aging. 2025 Mar;5(3):376-385. doi: 10.1038/s43587-024-00793-y.

105. Liu C, Hua L, Xin Z. Synergistic impact of 25-hydroxyvitamin D concentrations and physical activity on delaying aging. Redox Biol. 2024 Jul;73:103188. doi: 10.1016/j.redox.2024.103188.

106. Chen X, He C, Yu W, Ma L, Gou S, Fu P. Associations between dietary carotenoid and biological age acceleration: insights from NHANES 2009-2018. Biogerontology. 2024 Dec 10;26(1):24. doi: 10.1007/s10522-024-10160-4.

107. Palomar-Bonet M, Atienza M, Hernández-Ledesma B, Cantero JL. Associations of Salivary Total Antioxidant Capacity With Cortical Amyloid-Beta Burden, Cortical Glucose Uptake, and Cognitive Function in Normal Aging. J Gerontol A Biol Sci Med Sci. 2021 Sep 13;76(10):1839-1845. doi: 10.1093/gerona/glab034.

108. Lima M, Pestana C. Changes in Peripheral Blood Biomarkers with Aging and Neurodegenerative Disorders. Curr Aging Sci. 2021;14(2):112-117. doi: 10.2174/1874609814666210127090100.

109. Kurhaluk, N.; Kamiński, P.; Bilski, R.; Kołodziejska, R.; Woźniak, A.; Tkaczenko, H. Role of Antioxidants in Modulating the Microbiota–Gut–Brain Axis and Their Impact on Neurodegenerative Diseases. Int. J. Mol. Sci. 202526, 3658. https://doi.org/10.3390/ijms26083658

110. Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol. 2024 Nov;61(11):9078-9109. doi: 10.1007/s12035-024-04151-2.

111. Ngah, W.Z.W.; Ahmad, H.F.; Ankasha, S.J.; Makpol, S.; Tooyama, I. Dietary Strategies to Mitigate Alzheimer’s Disease: Insights into Antioxidant Vitamin Intake and Supplementation with Microbiota–Gut–Brain Axis Cross-Talk. Antioxidants 202413, 1504. https://doi.org/10.3390/antiox13121504

112. Munteanu, C.; Galaction, A.I.; Turnea, M.; Blendea, C.D.; Rotariu, M.; Poștaru, M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants 202413, 1062. https://doi.org/10.3390/antiox13091062

113. Liu J, Zhang Y, Li X, Hou Z, Wang B, Chen L, Chen M. Stratified dietary inflammatory potential identifies oral and gut microbiota differences associated with cognitive function in older adults. Sci Rep. 2025 May 30;15(1):18988. doi: 10.1038/s41598-025-02292-5.

114. Liu J, Zhang Y, Wu X, Li X, Hou Z, Wang B, Chen L, Lin F, Chen M. Dietary inflammatory potential and its impact on gut microbiota in patients with mild cognitive impairment. Food Funct. 2025 Jun 3;16(11):4493-4504. doi: 10.1039/d5fo01094b.

115. Chen J, Yang N, Peng Y, Zhou H, Li Q. Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011-2014. Nutrients. 2023 Jul 31;15(15):3408. doi: 10.3390/nu15153408.

116. Prajapati SK, Jain S, Yadav H. Age-Related Cognitive Decline and Dementia: Interface of Microbiome-Immune-Neuronal Interactions. J Gerontol A Biol Sci Med Sci. 2025 Jun 10;80(7):glaf038. doi: 10.1093/gerona/glaf038. 

117. Lazou-Ahrén I, Björklund M, Molin G, Xu J, Önning G, Elmståhl S, Jeppsson B. Probiotic-Reduced Inflammaging in Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins. 2024 Jun 19. doi: 10.1007/s12602-024-10310-7.

118. Xiao B, Fu L, Yang Z, Yu G. Effect of probiotics on cognitive function and cardiovascular risk factors in mild cognitive impairment and Alzheimer's disease: an umbrella meta-analysis. J Health Popul Nutr. 2025 Apr 8;44(1):109. doi: 10.1186/s41043-025-00816-3.

119. Bashir B, Gulati M, Vishwas S, Gupta G, Dhanasekaran M, Paudel KR, Chellappan DK, Anand K, Negi P, Singh PK, Rajput A, Dua K, Singh SK. Bridging gap in the treatment of Alzheimer's disease via postbiotics: Current practices and future prospects. Ageing Res Rev. 2025 Mar;105:102689. doi: 10.1016/j.arr.2025.102689. 

120. Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms. 2025 Apr 3;13(4):814. doi: 10.3390/microorganisms13040814.

121. Liu W, Guo D. Oxidative stress in periodontitis and the application of antioxidants in treatment: a narrative review. Front Physiol. 2025 May 13;16:1485367. doi: 10.3389/fphys.2025.1485367.

122. Nguyen LM, Tran AV, Kincheloe JP, Ebersole JE. Serum Nutrients, Periodontitis and Biological Ageing. J Clin Periodontol. 2025 Jun;52(6):868-876. doi: 10.1111/jcpe.14125. 

123. Zhang Q, Que H, Xu S, Xu L, Lin J, Deng H, Deng K, Wang Y. The Association of Intake of Vitamin Mixtures With Periodontitis: A Machine Learning Approach on NHANES. J Periodontal Res. 2025 Feb 24. doi: 10.1111/jre.13387.

124. Fernandez MDS, Martins TM, Meza-Mauricio J, Ribeiro MC, Silva FH, Casarin M, Muniz FWMG. Clinical efficacy of adjunctive use of coenzyme Q10 in non-surgical periodontal treatment: A systematic review. Eur J Oral Sci. 2025 Apr;133(2):e70002. doi: 10.1111/eos.70002.

125. Zhao M, Li P, Xie X, Shi P, Wang Q, Wang J, Xu C. The Critical Role of Polyphenols in Immunomodulation and Periodontal Regeneration. Oral Dis. 2024 Dec 30. doi: 10.1111/odi.15245. 

126. Arzani V, Soleimani M, Fritsch T, Jacob UM, Calabrese V, Arzani A. Plant polyphenols, terpenes, and terpenoids in oral health. Open Med (Wars). 2025 Apr 15;20(1):20251183. doi: 10.1515/med-2025-1183. 

127. Davinelli S, Medoro A, Hu FB, Scapagnini G. Dietary polyphenols as geroprotective compounds: From Blue Zones to hallmarks of ageing. Ageing Res Rev. 2025 Jun;108:102733. doi: 10.1016/j.arr.2025.102733.

128. Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother. 2024 Sep;178:117277. doi: 10.1016/j.biopha.2024.117277.

129. Guan Y, Li L, Yang R, Lu Y, Tang J. Targeting mitochondria with natural polyphenols for treating Neurodegenerative Diseases: a comprehensive scoping review from oxidative stress perspective. J Transl Med. 2025 May 23;23(1):572. doi: 10.1186/s12967-025-06605-0.

130. Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res. 2024 Sep;49(9):2319-2335. doi: 10.1007/s11064-024-04167-z.

131. He Y, Liu Y, Zhang M. The beneficial effects of curcumin on aging and age-related diseases: from oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front Aging Neurosci. 2025 Jan 20;17:1533963. doi: 10.3389/fnagi.2025.1533963. 

132. Villanueva JL, Vita AA, Zwickey H, Fitzgerald K, Hodges R, Zimmerman B, Bradley R. Dietary associations with reduced epigenetic age: a secondary data analysis of the methylation diet and lifestyle study. Aging (Albany NY). 2025 Apr 17;17(4):994-1010. doi: 10.18632/aging.206240.

133. Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing. 2024 Nov 7;21(1):76. doi: 10.1186/s12979-024-00481-w. 

134. Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr. 2024 Nov 18;11:1474597. doi: 10.3389/fnut.2024.1474597.

135. Liu, Y.; Fang, M.; Tu, X.; Mo, X.; Zhang, L.; Yang, B.; Wang, F.; Kim, Y.-B.; Huang, C.; Chen, L.; et al. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 202416, 3305. https://doi.org/10.3390/nu16193305

136. Saliev, T.; Singh, P.B. Targeting Senescence: A Review of Senolytics and Senomorphics in Anti-Aging Interventions. Biomolecules 202515, 860. https://doi.org/10.3390/biom15060860

137. Yaskolka Meir A, Keller M, Hoffmann A, Rinott E, Tsaban G, Kaplan A, Zelicha H, Hagemann T, Ceglarek U, Isermann B, Shelef I, Blüher M, Stumvoll M, Li J, Haange SB, Engelmann B, Rolle-Kampczyk U, von Bergen M, Hu FB, Stampfer MJ, Kovacs P, Liang L, Shai I. The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. BMC Med. 2023 Sep 25;21(1):364. doi: 10.1186/s12916-023-03067-3.

138. Pereira, Q.C.; dos Santos, T.W.; Fortunato, I.M.; Ribeiro, M.L. The Molecular Mechanism of Polyphenols in the Regulation of Ageing Hallmarks. Int. J. Mol. Sci. 202324, 5508. https://doi.org/10.3390/ijms24065508

139. Pereira QC, Fortunato IM, Oliveira FS, Alvarez MC, Santos TWD, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients. 2024 Apr 5;16(7):1066. doi: 10.3390/nu16071066. 

140. Buglio DS, Marton LT, Laurindo LF, Guiguer EL, Araújo AC, Buchaim RL, Goulart RA, Rubira CJ, Barbalho SM. The Role of Resveratrol in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. J Med Food. 2022 Aug;25(8):797-806. doi: 10.1089/jmf.2021.0084.

141. Morkovin, E.; Litvinov, R.; Koushner, A.; Babkov, D. Resveratrol and Extra Virgin Olive Oil: Protective Agents Against Age-Related Disease. Nutrients 202416, 4258. https://doi.org/10.3390/nu16244258

142. Islam F, Nafady MH, Islam MR, Saha S, Rashid S, Akter A, Or-Rashid MH, Akhtar MF, Perveen A, Md Ashraf G, Rahman MH, Hussein Sweilam S. Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Mol Neurobiol. 2022 Jul;59(7):4384-4404. doi: 10.1007/s12035-022-02859-7.

143. Subhan I, Siddique YH. Resveratrol: Protective Agent Against Alzheimer's Disease. Cent Nerv Syst Agents Med Chem. 2024;24(3):249-263. doi: 10.2174/0118715249287167240222081517.

144. Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol. 2022 Sep 5;13:948889. doi: 10.3389/fphar.2022.948889. 

145. Wei H, Fang G, Song W, Cao H, Dong R, Huang Y. Resveratrol's bibliometric and visual analysis from 2014 to 2023. Front Plant Sci. 2024 Oct 8;15:1423323. doi: 10.3389/fpls.2024.1423323. 

146. Yadegar S, Mohammadi F, Yadegar A, Mohammadi Naeini A, Ayati A, Milan N, Tayebi A, Seyedi SA, Nabipoorashrafi SA, Rabizadeh S, Esteghamati A, Nakhjavani M. Effects and safety of resveratrol supplementation in older adults: A comprehensive systematic review. Phytother Res. 2024 May;38(5):2448-2461. doi: 10.1002/ptr.8171. 

147. Menegas S, Keller GS, Possamai-Della T, Aguiar-Geraldo JM, Quevedo J, Valvassori SS. Potential mechanisms of action of resveratrol in prevention and therapy for mental disorders. J Nutr Biochem. 2023 Nov;121:109435. doi: 10.1016/j.jnutbio.2023.109435. 

148. Naik RA, Rajpoot R, Koiri RK, Bhardwaj R, Aldairi AF, Johargy AK, Faidah H, Babalghith AO, Hjazi A, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Shkodina A, Singh SK. Dietary supplementation and the role of phytochemicals against the Alzheimer's disease: Focus on polyphenolic compounds. J Prev Alzheimers Dis. 2025 Jan;12(1):100004. doi: 10.1016/j.tjpad.2024.100004.

149. de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites. 2025 Feb 13;15(2):124. doi: 10.3390/metabo15020124.

150. Mini-Review Resveratrolo Peri- Post-Menopausa https://www.mitochon.it/peri-e-post-menopausa-novita-sui-vantaggi-dellintegrazionealimentare-mirata/

151. Mini-Review Resveratrolo effetti neuroprotettivi https://www.mitochon.it/cervello-e-cognitivita-effetti-neuroprotettivi-del-resveratrolo/

152. Zhang S, Kiarasi F. Therapeutic effects of resveratrol on epigenetic mechanisms in age-related diseases: A comprehensive review. Phytother Res. 2024 May;38(5):2347-2360. doi: 10.1002/ptr.8176.

153. Mini-Review Sovrappenso / Obesità - Resveratrolo - Antiossidanti 2025 https://www.mitochon.it/sovrappeso-obesita-quale-contributo-dal-resveratrolo-ed-altri-antiossidanti/?v=0d149b90e739

154. Mini-Review Stress psicofisico - Antiossidanti / Neuroprotettori 2025 https://www.mitochon.it/stress-psicofisico-attualita-sulluso-appropriato-di-antiossidanti-neuroprotettivi/?v=0d149b90e739

155. Koushki M, Farahani M, Yekta RF, Frazizadeh N, Bahari P, Parsamanesh N, Chiti H, Chahkandi S, Fridoni M, Amiri-Dashatan N. Potential role of resveratrol in prevention and therapy of diabetic complications: a critical review. Food Nutr Res. 2024 Apr 30;68. doi: 10.29219/fnr.v68.9731.

156. Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev. 2024 Aug;99:102416. doi: 10.1016/j.arr.2024.102416.

157. Yavari, M.; Kalupahana, N.S.; Harris, B.N.; Ramalingam, L.; Zu, Y.; Kahathuduwa, C.N.; Moustaid-Moussa, N. Mechanisms Linking Obesity, Insulin Resistance, and Alzheimer’s Disease: Effects of Polyphenols and Omega-3 Polyunsaturated Fatty Acids. Nutrients 202517, 1203. https://doi.org/10.3390/nu17071203

158. Hattori Y, Kakino Y, Hattori Y, Iwashita M, Uchiyama H, Noda K, Yoshimoto T, Iida H, Ihara M. Long-Term Resveratrol Intake for Cognitive and Cerebral Blood Flow Impairment in Carotid Artery Stenosis/Occlusion. J Stroke. 2024 Jan;26(1):64-74. doi: 10.5853/jos.2023.02733.

159. Mini-Review Osteoporosi - Resveratrolo 2025 https://www.mitochon.it/osteoporosi-nel-post-menopausa-attualita-sul-ruolo-del-resveratrolo-altri-antiossidanti-e-vitamine/?v=0d149b90e739

160. Thaung Zaw JJ, Howe PR, Wong RH. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: A 24-month randomised, double-blind, placebo-controlled, crossover study. Clin Nutr. 2021 Mar;40(3):820-829. doi: 10.1016/j.clnu.2020.08.025.

161. Nemzer, B.V.; Al-Taher, F.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int. J. Mol. Sci. 202526, 1335. https://doi.org/10.3390/ijms26031335

162. Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells. 2024 Jul 3;13(13):1145. doi: 10.3390/cells13131145.

163. Nakadate, K.; Ito, N.; Kawakami, K.; Yamazaki, N. Anti-Inflammatory Actions of Plant-Derived Compounds and Prevention of Chronic Diseases: From Molecular Mechanisms to Applications. Int. J. Mol. Sci. 202526, 5206. https://doi.org/10.3390/ijms26115206

164. Chen X, Zhang J, Yin N, Wele P, Li F, Dave S, Lin J, Xiao H, Wu X. Resveratrol in disease prevention and health promotion: A role of the gut microbiome. Crit Rev Food Sci Nutr. 2024;64(17):5878-5895. doi: 10.1080/10408398.2022.2159921. 

165. Zhu W, Gong A, Zhang B, Cheng H, Huang L, Wu X, Zhang D, Dai W, Li S, Xu H. The Chronobiological and Neuroprotective Mechanisms of Resveratrol in Improving Sleep. Mediators Inflamm. 2025 Mar 19;2025:4954030. doi: 10.1155/mi/4954030. 

166. Fernández-Portero C, Amián JG, Bella R, López-Lluch G, Alarcón D. Coenzyme Q10 Levels Associated With Cognitive Functioning and Executive Function in Older Adults. J Gerontol A Biol Sci Med Sci. 2023 Jan 26;78(1):1-8. doi: 10.1093/gerona/glac152.

167. Sood B, Patel P, Keenaghan M. Coenzyme Q10. [Updated 2024 Jan 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531491/ 

168. Sharma H, Binte Ibrahim S, Al Noman A, Zohora UFT, Shifa FA, Siddika S, Tasneem S, Al Azad M, Pathak R. The Potential of Coenzyme Q10 in Alzheimer's Disease: Reducing IL-17 Induced Inflammation and Oxidative Stress for Neuroprotection. Curr Drug Res Rev. 2025 Apr 24. doi: 10.2174/0125899775373406250411104442.

169. Jiang, X.; Guo, Y.; Cui, L.; Huang, L.; Guo, Q.; Huang, G. Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients 202315, 1243. https://doi.org/10.3390/nu15051243

170. Ebrahimi A, Kamyab A, Hosseini S, Ebrahimi S, Ashkani-Esfahani S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem Res Int. 2023 Nov 1;2023:5510874. doi: 10.1155/2023/5510874.

171. Mantle, D.; Hargreaves, I.P. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int. J. Mol. Sci. 202223, 12603. https://doi.org/10.3390/ijms232012603

172. Mantle, D.; Hargreaves, I. Coenzyme Q10 and the Blood–Brain Barrier: An Overview. J. Clin. Med. 202514, 2748. https://doi.org/10.3390/jcm14082748

173. Castro-Marrero J, Segundo MJ, Lacasa M, Martinez-Martinez A, Sentañes RS, Alegre-Martin J. Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021 Jul 30;13(8):2658. doi: 10.3390/nu13082658. 

174. Badaeva A, Danilov A, Kosareva A, Lepshina M, Novikov V, Vorobyeva Y, Danilov A. Neuronutritional Approach to Fibromyalgia Management: A Narrative Review. Pain Ther. 2024 Oct;13(5):1047-1061. doi: 10.1007/s40122-024-00641-2. 

175. Maggini S, Óvári V, Ferreres Giménez I, Pueyo Alamán MG. Benefits of micronutrient supplementation on nutritional status, energy metabolism, and subjective wellbeing. Nutr Hosp. 2021 Sep 30;38(Spec No2):3-8. English. doi: 10.20960/nh.03788. 

176. Mini-Review Coenzima Q10 2025 https://www.mitochon.it/il-coenzima-q10-novita-per-luso-mirato-nellantiaging-cutaneo-e-per-gli-effetti-sistemici/?v=0d149b90e739

177. Mini-Review Coenzima Q10 https://www.mitochon.it/coenzima-q10-anti-aging-mitocondriale-per-la-pelle/

178. Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Agúndez, J.A.G. Coenzyme Q10 and Dementia: A Systematic Review. Antioxidants 202312, 533. https://doi.org/10.3390/antiox12020533

179. Akhigbe TM, Fidelis FB, Adekunle AO, Ashonibare VJ, Akorede BA, Shuaibu MS, Hassan SA, Adegbola CA, Ashonibare PJ, Oladapo OM, Adeogun AE, Bamidele SG, Oyedokun PA, Mukolokota M, Kukoyi OS, Oladipo AA, Adelowo OE, Akangbe MD, Hughes JR, Ricken AM, Culty M, Avellar MCW, Akhigbe RE. Does coenzyme Q10 improve semen quality and circulating testosterone level? a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2025 Jan 3;15:1497930. doi: 10.3389/fphar.2024.1497930.

180. Martin, L.J.; Touaibia, M. Prevention of Male Late-Onset Hypogonadism by Natural Polyphenolic Antioxidants. Nutrients 202416, 1815. https://doi.org/10.3390/nu16121815

181. Yeap BB, Flicker L. Testosterone, cognitive decline and dementia in ageing men. Rev Endocr Metab Disord. 2022 Dec;23(6):1243-1257. doi: 10.1007/s11154-022-09728-7. 

182. Zhou J, Dong Q. Testicular aging: mechanism, management and future therapy. Exp Cell Res. 2025 Jun 15;449(2):114603. doi: 10.1016/j.yexcr.2025.114603.

183. Indirli R, Lanzi V, Arosio M, Mantovani G, Ferrante E. The association of hypogonadism with depression and its treatments. Front Endocrinol (Lausanne). 2023 Aug 10;14:1198437. doi: 10.3389/fendo.2023.1198437.

184. Wu Y, Chen F, Zhang T, Miao M, Zhang M, Zhang J, Chang E. The causal association between circulating metabolites and Alzheimer's disease: a systematic review and meta-analysis of Mendelian randomization studies. Metabolomics. 2025 Apr 21;21(3):53. doi: 10.1007/s11306-025-02242-2.

185. Wang B, Liu X, Chen W, Liu L. Effects of androgen replacement therapy on cognitive function in patients with hypogonadism: A systematic review and metaanalysis. Biomed Rep. 2025 Apr 25;22(6):105. doi: 10.3892/br.2025.1983. 

186. Zinkow A, Grodzicki W, Czerwińska M, Dziendzikowska K. Molecular Mechanisms Linking Omega-3 Fatty Acids and the Gut-Brain Axis. Molecules. 2024 Dec 28;30(1):71. doi: 10.3390/molecules30010071. 

187. Wu D, Jia Y, Liu Y and Shang M (2024) Dose–response relationship of dietary Omega-3 fatty acids on slowing phenotypic age acceleration: a cross-sectional study. Front. Nutr. 11:1424156. doi: 10.3389/fnut.2024.1424156

188. Wattanathorn J, Thukham-Mee W, Tong-Un T, Sangartit W, Somboonporn W, Paholpak P. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, 8-Week Pilot Study of Tuna-Byproduct-Derived Novel Supplements for Managing Cellular Senescence and Cognitive Decline in Perimenopausal and Postmenopausal Women. Antioxidants (Basel). 2025 Apr 27;14(5):520. doi: 10.3390/antiox14050520.

189. Yavari, M.; Kalupahana, N.S.; Harris, B.N.; Ramalingam, L.; Zu, Y.; Kahathuduwa, C.N.; Moustaid-Moussa, N. Mechanisms Linking Obesity, Insulin Resistance, and Alzheimer’s Disease: Effects of Polyphenols and Omega-3 Polyunsaturated Fatty Acids. Nutrients 202517, 1203. https://doi.org/10.3390/nu17071203

190. Siopis G, Porter J. Contribution of Biological Age-Predictive Biomarkers to Nutrition Research: A Systematic Review of the Current Evidence and Implications for Future Research and Clinical Practice. Adv Nutr. 2022 Oct 2;13(5):1930-1946. doi: 10.1093/advances/nmac060.

191. Fabian P, Blander G, Deehan R, Torkamani A, Nogal B. Causal impact of genetically-determined fish and fish oil intake on epigenetic age acceleration and related serum markers. Hum Genomics. 2025 May 24;19(1):61. doi: 10.1186/s40246-025-00756-3.  

192. Wang B, Li D, Peng C, Hong J, Wu Y. Dietary omega-3 intake and cognitive function in older adults. Int J Psychiatry Med. 2025 May;60(3):265-279. doi: 10.1177/00912174241284925.

193. Maltais M, de Souto Barreto P, Bowman GL, Smith AD, Cantet C, Andrieu S, Rolland Y. Omega-3 Supplementation for the Prevention of Cognitive Decline in Older Adults: Does It Depend on Homocysteine Levels? J Nutr Health Aging. 2022;26(6):615-620. doi: 10.1007/s12603-022-1809-5.

194. Lin C, Lee SH, Huang CM, Wu YW, Chang YX, Liu HL, Ng SH, Cheng YC, Chiu CC, Wu SC. Cognitive protection and brain entropy changes from omega-3 polyunsaturated fatty acids supplement in late-life depression: A 52-week randomized controlled trial. J Affect Disord. 2024 Apr 15;351:15-23. doi: 10.1016/j.jad.2024.01.205. 

195. Deshmukh GV, Niaz H, Bai R, Kim DH, Kim JW, Asghar J, Ramzan T, Maqbool M, Abushalha NB, Arif S, Khan S. The Role of Omega-3 Fatty Acid Supplementation in Slowing Cognitive Decline Among Elderly Patients With Alzheimer's Disease: A Systematic Review of Randomized Controlled Trials. Cureus. 2024 Nov 10;16(11):e73390. doi: 10.7759/cureus.73390.

196. Naaman RK, Alashmali S, Bakhsh MA, Muqaibil AA, Ghunaim FM, Alattas AH. Association of omega-3 polyunsaturated fatty acids intake and cognitive function in middle-aged and older adults. Nutr Neurosci. 2025 Jun;28(6):649-658. doi: 10.1080/1028415X.2024.2404785.

197. Lin C, Lee SH, Huang CM, Wu YW, Chang YX, Liu HL, Ng SH, Cheng YC, Chiu CC, Wu SC. Cognitive protection and brain entropy changes from omega-3 polyunsaturated fatty acids supplement in late-life depression: A 52-week randomized controlled trial. J Affect Disord. 2024 Apr 15;351:15-23. doi: 10.1016/j.jad.2024.01.205. 

198. Power R, Nolan JM, Prado-Cabrero A, Roche W, Coen R, Power T, Mulcahy R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr. 2022 Feb;41(2):405-414. doi: 10.1016/j.clnu.2021.12.004. 

199. Nolan JM, Power R, Howard AN, Bergin P, Roche W, Prado-Cabrero A, Pope G, Cooke J, Power T, Mulcahy R. Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer's Disease. J Alzheimers Dis. 2022;90(1):233-249. doi: 10.3233/JAD-220556. 

200. Fekete, M.; Lehoczki, A.; Tarantini, S.; Fazekas-Pongor, V.; Csípő, T.; Csizmadia, Z.; Varga, J.T. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 202315, 5116. https://doi.org/10.3390/nu15245116

201. Fairbairn P, Dyall SC, Tsofliou F. The effects of multi-nutrient formulas containing a combination of n-3 PUFA and B vitamins on cognition in the older adult: a systematic review and meta-analysis. Br J Nutr. 2023 Feb 14;129(3):428-441. doi: 10.1017/S0007114522001283.

202. Prokopidis K, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2023 Mar 10;81(4):416-427. doi: 10.1093/nutrit/nuac064. 

203. Xu C, Bi S, Zhang W, Luo L. The effects of creatine supplementation on cognitive function in adults: a systematic review and meta-analysis. Front Nutr. 2024 Jul 12;11:1424972. doi: 10.3389/fnut.2024.1424972. Erratum in: Front Nutr. 2025 Feb 17;12:1570800. doi: 10.3389/fnut.2025.1570800. 

204. Sandkühler JF, Kersting X, Faust A, Königs EK, Altman G, Ettinger U, Lux S, Philipsen A, Müller H, Brauner J. The effects of creatine supplementation on cognitive performance-a randomised controlled study. BMC Med. 2023 Nov 15;21(1):440. doi: 10.1186/s12916-023-03146-5.

205. Bigio B, Azam S, Mathé AA, Nasca C. The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications. Discov Ment Health. 2024 Jan 2;4(1):2. doi: 10.1007/s44192-023-00056-z. 

206. Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des. 2024;30(39):3074-3107. doi: 10.2174/0113816128321466240816075041.

207. Mazza, E.; Maurotti, S.; Ferro, Y.; Castagna, A.; Pujia, C.; Sciacqua, A.; Pujia, A.; Montalcini, T. Magnesium: Exploring Gender Differences in Its Health Impact and Dietary Intake. Nutrients 202517, 2226. https://doi.org/10.3390/nu17132226

208. Varga, P.; Lehoczki, A.; Fekete, M.; Jarecsny, T.; Kryczyk-Poprawa, A.; Zábó, V.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Varga, J.T. The Role of Magnesium in Depression, Migraine, Alzheimer’s Disease, and Cognitive Health: A Comprehensive Review. Nutrients 202517, 2216. https://doi.org/10.3390/nu17132216

209. Kołodziejska, R.; Woźniak, A.; Bilski, R.; Wesołowski, R.; Kupczyk, D.; Porzych, M.; Wróblewska, W.; Pawluk, H. Melatonin—A Powerful Oxidant in Neurodegenerative Diseases. Antioxidants 202514, 819. https://doi.org/10.3390/antiox14070819

210. Mini-Review studio pilota Mitofast https://www.mitochon.it/mitofast-nuovi-ed-importanti-risultati-da-uno-studio-clinico-preliminare/

211. Mini-Review Motivi per l’Integrazione Mirata https://www.mitochon.it/4-motivi-1-per-utilizzare-lintegrazione-mirata-contro-linvecchiamento-cutaneo-e-sistemico/

212. Mini-Review N-acetilglusosamina https://www.mitochon.it/n-acetilglucosamina-nag-per-il-trofismo-cutaneo/

213. Mini-Review Cellule cutanee - senescenza https://www.mitochon.it/le-ultime-scoperte-sullattivita-dei-mitocondri-cellule-cutanee-bersagli-e-risultati-dellantiaging-mitocondriale/

214. Mini-Review Glutatione / NAC https://www.mitochon.it/glutatione-perche-proteggere-le-sue-concentrazioni-cellulari-nellantiaging/

215. Mini-Review N-acetilcisteina https://www.mitochon.it/n-acetilcisteina-nac-dalla-clinica-allanti-aging/

216. Chakraborty S, Shankaranarayana Rao BS, Tripathi SJ. The neuroprotective effects of N-acetylcysteine in psychiatric and neurodegenerative disorders: From modulation of glutamatergic transmission to restoration of synaptic plasticity. Neuropharmacology. 2025 May 23;278:110527. doi: 10.1016/j.neuropharm.2025.110527.

217. Kumar P, Liu C, Hsu JW, Chacko S, Minard C, Jahoor F, Sekhar RV. Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin Transl Med. 2021 Mar;11(3):e372. doi: 10.1002/ctm2.372.

218. Sekhar RV. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J Nutr. 2021 Dec 3;151(12):3606-3616. doi: 10.1093/jn/nxab309.

219. Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, Minard CG, Taffet GE, Sekhar RV. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci. 2023 Jan 26;78(1):75-89. doi: 10.1093/gerona/glac135.

220. Pawar Poonam P, Ghorpade Hemant S., Kokane Bhavana A. Sublingual route for systemic drug delivery. Journal of Drug Delivery & Therapeutics. 2018; 8(6-s):340-343

221. Ahmad A, Akhtar J, Ahmad M, Wasim R, Khan MI. Drug Delivery Approaches for Buccal and Sublingual Administration. Drug Res (Stuttg). 2025 Apr 22. doi: 10.1055/a-2560-9884.

222. Bellanti, F.; Coda, A.R.D.; Trecca, M.I.; Lo Buglio, A.; Serviddio, G.; Vendemiale, G. Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress. Antioxidants 2025, 14, 656. https://doi.org/10.3390/antiox14060656

223. Charbit, J.; Vidal, J.-S.; Hanon, O. Effects of Dietary Interventions on Cognitive Outcomes. Nutrients 202517, 1964. https://doi.org/10.3390/nu17121964

224. Mini-Review Antiaging cognitivo 2025 https://www.mitochon.it/antiaging-cognitivo/?v=0d149b90e739

 

© Riproduzione riservata

Commenti