• Salute
  • Resveratrolo ed altri antiossidanti: i benefici in caso di sovrappeso ed obesità

Resveratrolo ed altri antiossidanti: i benefici in caso di sovrappeso ed obesità

di Andrea Tognelli, Farmacista - Firenze

martedì 27 maggio 2025

Oltre a rilevanti attività antiossidanti, antinfiammatorie ed antiaging il resveratrolo svolge interessanti attività sul regolare funzionamento del tessuto adiposo.

Inoltre, il resveratrolo contribuisce a prevenire ed attenuare alcuni disturbi clinici correlati al sovrappeso / obesità.

Sovrappeso / obesità e difese antiossidanti

Le insufficienti difese antiossidanti dell’organismo (Nota 1) accelerano l’invecchiamento biologico del nostro organismo, ed aumentano il rischio d’insorgenza di molte malattie croniche (1-13).

Viceversa, adeguate capacità antiossidanti hanno un significativo effetto protettivo contro l’invecchiamento, anche nelle persone maggiormente a rischio, es.:  uomini, fumatori,  consumatori di alcol (13, 14, 15, 16).

Sono argomenti di estrema attualità scientifica trattati da prestigiose riviste internazionali: Antioxidants (13),  Biogerontology (14), International Journal of Molecular Sciences (16)

Nelle persone in sovrappeso o con l’obesità conclamata, le difese antiossidante risultano significativamente basse, rispetto ai soggetti con peso corporeo normale (7, 13).

Le alterazioni del peso corporeo determinano l’insorgenza di stress ossidativoinfiammazione cronica, alterazioni immunitarie, disfunzione mitocondriale, che portano all’esaurimento delle difese antiossidanti e contribuiscono ad accelerare l’invecchiamento (13, 17, 18, 19, 20, 21, 22, 23, 24, 25).

L’avanzamento dell’età, inoltre, causa di per se il declino delle naturali difese antiossidanti dell’organismo,  e viene acutizzato da malattie, terapie farmacologiche, insufficiente apporto alimentare di micronutrienti / antiossidanti, fumo di sigaretta, ecc. (12). Si assiste ad un forte abbassamento delle concentrazioni ematiche di glutatione, coenzima Q10, vitamina C ed E, oltre ad altri antiossidanti sintetizzati dall’organismo, es.: superossido dismutasi (12, 26, 27, 28, 29, 30, 31, 32).

Queste trasformazioni hanno un impatto negativo sulla salute cardiometabolica e neurocognitiva (33-43) , aggravato anche dal declino di molecole endogene che, in condizioni fisiologiche, svolgono azioni antiaging: sirtuine e kloto proteine (44, 45, 46, 47, 48, 49, 50)

I benefici metabolici dei polifenoli 

Le ricerche degli ultimi anni hanno individuato composti di origine vegetale, come i polifenoli (Nota 2), dotate di effetti benefici sul regolare funzionamento del tessuto adiposo (51).

Ne sono un esempio: curcumina, quercetina, resveratrolo ecc., presenti in piccole quantità in alcuni alimenti di origine vegetale, ma sono caratterizzati anche ad un bassa biodisponibilità (51, 52, 53, 54, 55, 56). 

Oltre a questa caratteristica, le attuali abitudini alimentare ed il basso consumo di cibi ricchi di polifenoli non permettono di raggiungere quantità efficaci di questi antiossidanti / antiaging naturali (12, 57-63). 

Per questo sono stati ampiamente studiati i risultati conseguiti con l’integrazione di resveratrolo (44, 51, 52, 53, 54, 55, 69, 70-80), che contribuisce a migliorare importanti parametri metabolici  (es.: profilo lipidico e glicemico), alla positiva attivazione delle sirtuine e kloto con i loro effetti antiaging, ed alla regolazione ponderale (54, 55, 69, 70, 71, 72, 73, 81-91):

Inoltre il resveratrolo, come altri polifenoli, es.: quercetina, curcumina, ha una favorevole e significativa influenza per:

- mantenere l’omeostasi del microbiota intestinale che risulta funzionale anche per il controllo del peso corporeo e la prevenzione delle malattie età dipendenti (87, 92-99);

- modulare il senso di sazietà ed appetito (30, 81, 100, 101, 102, 103).

I benefici metabolici di altri antiossidanti

Oltre ai polifenoli, altre molecole attive sui processi ossido-infiammatori possono contribuire ad elevare le difese antiossidanti e prevenire le complicazioni del sovrappeso / obesità, es.: cardiovascolari, metaboliche, steatosi epatica, disbiosi intestinale, oltre a contrastare l’invecchiamento biologico (30):

- glutatione (104 - 110);

- vitamina E (30, 104, 110-116);

- vitamina C (31, 32, 104, 111, 117, 118, 119);

- vitamine del complesso B (111, 120, 121, 122, 123) in particolare, l’acido folico, la vitamina B6 e la B12 (121, 122, 123, 124).

 

- vitamina A, selenio, carotenoidi (30), acidi grassi omega 3  (125, 126, 127, 128), coenzima Q10 e vitamina D (110, 129-137).

Gran parte di queste molecole con il loro effetto antiossidante diretto, ed il loro coinvolgimento nella sintesi degli antiossidanti endogeni, contribuiscono a contrastare gli squilibri del tessuto adiposo e le relative complicazioni cliniche (87, 110, 129, 138, 139, 140, 141, 142, 143).

Innovazione dalla ricerca

Anche per queste problematiche l’integratore alimentare Mitofast® bit.ly/3VUlGkS, frutto della ricerca Mitochon srl https://www.mitochon.it/, può contribuire a raggiungere significativi risultati.

Infatti, Mitofast ha specifiche caratteristiche che permettono di:

- ottimizzare l’assorbimento e la biodisponibilità del resveratrolo (90, 91, 92), con la somministrazione in forma  orosolubile, da sciogliere in bocca senza utilizzo di acqua;

- ottenere un’azione sinergica degli ingredienti attivi: resveratrolo, coenzima Q10, N-acetilcisteina (precursore di glutatione), N-acetilglucosammina, acido folico e vitamina C (90, 91, 109, 110, 115, 119, 120, 121, 122, 123);


- incrementare le difese antiossidanti dell’organismo (110), ridurre i danni dell’ossido-infiammazione (110, 141), proteggere e rigenerare le attività mitocondriali e cellulari (142);  

- prevenire ed attenuare i danni dell’ invecchiamento e dei disturbi correlati (11, 12, 15, 90-92, 107-110, 115, 119-123) .

Nota 1 (1-13)

Difese antiossidanti dell’organismo

Negli ultimi anni numerose ricerche si sono concentrate sulle implicazioni delle difese antiossidanti dell’organismo e le relazioni con varie problematiche cliniche.

Per esprimere lo stato antiossidante è stato introdotto il parametro della capacità antiossidante totale (Total Antioxidant Capacity, TAC), sia per quanto riguarda l’apporto alimentare giornaliero (dietary TAC), sia per quella rilevabile nei fluidi organici, sangue (serum TAC), saliva, urine (1, 2, 3,, 4, 5, 6).

Nell’organismo, la capacità antiossidante totale esprime l’attività antiossidante sinergica delle sostanze assunte per via alimentare e quelle fisiologicamente sintetizzate nelle cellule. Le fisiologiche difese antiossidanti del nostro organismo comprendo molecole enzimatiche, es.: superossido dismutasi (SOD), glutatione perossidasi (GPx) e catalasi (CAT) (7).

Tra gli antiossidanti non enzimatici prodotti endogenicamente il glutatione e la melatonina.

E’ molto ampia la varietà di antiossidanti esogeni non sintetizzati dall’organismo, ad iniziare dalla vitamina C, ed altre molecole come: vitamina E, coenzima Q10 (solo in parte sintetizzato anche nelle cellule), carotenoidi, polifenoli, sulforafani, minerali ecc introdotti con l’alimentazione (8, 9).

Le concentrazioni di entrambe le categorie di antiossidanti che riflettono la capacità antiossidante totale, sono suscettibili a variazioni e ad un’inesorabile declino con l’avanzamento dell’età (7), Oltre all’effetto di vari agenti esterni ed abitudini di vita, es.: raggi ultravioletti, inquinanti ecc. (9, 10), all’alta esposizione allo stress psicofisico (11), per insufficiente apporto alimentare di importanti molecole antiossidanti presenti in alcuni tipi di frutti e verdure, ed altri fattori (12, 13) ecc..

Nota 2 (30, 51, 52)

I polifenoli sono composti presenti in piccole quantità nei prodotti vegetali, es.: frutta, verdura, olio di oliva. I polifenoli hanno un ruolo chiave nel rigenerare il sistema antiossidante endogeno, es.: superossido dismutasi (SOD), glutatione perossidasi (GPx) e catalasi (CAT) (30, 51, 52).

In contemporanea, i polifenoli risultano fondamentali per arginare l’eccessiva produzione di specie reattive dell’ossigeno (ROS) e l’infiammazione cronica alimentata anche dal tessuto adiposo (30)

Inoltre, i polifenoli hanno la capacità di contrastare la senescenza cellulare (attività senolitica), prevenire e ridurre la disfunzione mitocondriale ed immunitaria ecc., che inciderebbero negativamente anche sulla composizione corporea, oltre ad accelerare il processo dell’’invecchiamento (51, 52).

 

Bibliografia

1. Tran, M.T.; Gomez, S.V.; Alenicheva, V.; Remcho, V.T. A Paper-Based Assay for the Determination of Total Antioxidant Capacity in Human Serum Samples. Biosensors 2024, 14, 559. https://doi.org/10.3390/bios14110559

2. Çolak BBÖ, Kürklü NS, Adıgüzel KT, Adıgüzel E. Dietary and serum antioxidant capacity is inversely associated with patients in osteoarthritis: a case-control study. J Health Popul Nutr. 2024 Jul 4;43(1):101. doi: 10.1186/s41043-024-00566-8.

3. Taha SM Jr, Zardawi FM Sr, Anwar C Sr, Mohammed SA Jr, Mousa H Sr. Assessment of Total Antioxidant Capacity and Malondialdehyde Levels in Obese Patients With Periodontitis. Cureus. 2024 Dec 16;16(12):e75831. doi: 10.7759/cureus.75831.

4. Kujawowicz K, Mirończuk-Chodakowska I, Cyuńczyk M, Witkowska AM. Malnutrition Risk in Older Adults: Evaluating the Diagnostic Relevance of Serum Biomarkers: SIRT-1, CCK-8, Melatonin, and Total Antioxidant Capacity (TAC). Nutrients. 2025 Feb 18;17(4):726. doi: 10.3390/nu17040726. 

5. Pourhabibi-Zarandi F, Rafraf M, Zayeni H, Asghari-Jafarabadi M, Ebrahimi AA. The efficacy of curcumin supplementation on serum total antioxidant capacity, malondialdehyde, and disease activity in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res. 2024 Jul;38(7):3552-3563. doi: 10.1002/ptr.8225.

6. Babakr AT, Nour Eldein MM. Assessment of lipid peroxidation and total antioxidant capacity in patients with breast cancer. Explor Target Antitumor Ther. 2025 Jan 2;6:1002284. doi: 10.37349/etat.2025.1002284. 

7. Vázquez-Lorente, H.; Herrera-Quintana, L.; Molina-López, J.; Gamarra-Morales, Y.; López-González, B.; Planells, E. Relationship between Body Composition and Biochemical Parameters with Antioxidant Status in a Healthy Cohort of Postmenopausal Women. Metabolites 2022, 12, 746. https://doi.org/10.3390/metabo12080746

8. Korczowska-Łącka, I.; Słowikowski, B.; Piekut, T.; Hurła, M.; Banaszek, N.; Szymanowicz, O.; Jagodziński, P.P.; Kozubski, W.; Permoda-Pachuta, A.; Dorszewska, J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants 2023, 12, 1811. https://doi.org/10.3390/antiox12101811

9. Narmin Hama amin Hussen, Sakar Karem Abdulla, Naza Mohammed Ali, Van Abdulqader Ahmed, Aso Hameed Hasan, Eman Erfan Qadir, Role of antioxidants in skin aging and the molecular mechanism of ROS: A comprehensive review, Aspects of Molecular Medicine, Vol. 5, 2025, https://doi.org/10.1016/j.amolm.2025.100063.

10. Grifoni, D.; Bustaffa, E.; Sabatino, L.; Calastrini, F.; Minichilli, F.; Gaggini, M.; Berti, S.; Vassalle, C. The Dark Triad of Particulate Matter, Oxidative Stress and Coronary Artery Disease: What About the Antioxidant Therapeutic Potential. Antioxidants 2025, 14, 572. https://doi.org/10.3390/antiox14050572

11. Mini-Review Stress psicofisico - Antiossidanti / Neuroprotettori https://www.mitochon.it/stress-psicofisico-attualita-sulluso-appropriato-di-antiossidanti-neuroprotettivi/?v=0d149b90e739

12. Mini-Review Motivi per l’Integrazione Mirata https://www.mitochon.it/4-motivi-1-per-utilizzare-lintegrazione-mirata-contro-linvecchiamento-cutaneo-e-sistemico/

13. Silvestrini, A.; Mancini, A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants 2024, 13, 933. https://doi.org/10.3390/antiox13080933

14. Wu, Y., Xiang, M., Zhao, Y. et al. The L-shaped link between total antioxidant capacity and phenotypic age acceleration: evidence from NHANES 2003–2010. Biogerontology 26, 85 (2025). https://doi.org/10.1007/s10522-025-10223-0

15. Mini-Review Pelle maschile - antiaging https://www.mitochon.it/salute-della-pelle-maschile-e-nuove-acquisizione-per-lantiaging/

16. Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. https://doi.org/10.3390/ijms241310978

17. Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell. 2024 Jan;23(1):e13942. https://onlinelibrary.wiley.com/doi/10.1111/acel.13942

18. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001

19. Sihang Fang , Mingjun Jiang , Juan Jiao , Hongye Zhao , Dizhi Liu , Danni Gao , Tenger Wang , Ze Yang , Huiping Yuan. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging and disease. 2025 https://doi.org/10.14336/AD.2024.1253

20. Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis. 2025 Jan 4. doi: 10.14336/AD.2024.1253.

21. Tijerina A, Fonseca D, Aguilera-González CJ, Heya MS, Martínez N, Sánchez N, Bouzas C, Tur JA, Salas R. Plasma Antioxidant Capacity Is Related to Dietary Intake, Body Composition, and Stage of Reproductive Aging in Women. Antioxidants (Basel). 2024 Aug 2;13(8):940. doi: 10.3390/antiox13080940. 

22. Černiauskas L, Mažeikienė A, Mazgelytė E, Petrylaitė E, Linkevičiūtė-Dumčė A, Burokienė N, Karčiauskaitė D. Malondialdehyde, Antioxidant Defense System Components and Their Relationship with Anthropometric Measures and Lipid Metabolism Biomarkers in Apparently Healthy Women. Biomedicines. 2023 Sep 3;11(9):2450. doi: 10.3390/biomedicines11092450. 

23. Farhangi MA, Vajdi M, Fathollahi P. Dietary total antioxidant capacity (TAC), general and central obesity indices and serum lipids among adults: An updated systematic review and meta-analysis. Int J Vitam Nutr Res. 2022 Oct;92(5-6):406-422. doi: 10.1024/0300-9831/a000675.

24. Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother. 2024 Sep;178:117277. doi: 10.1016/j.biopha.2024.117277.

25. Bosch-Sierra, N.; Grau-del Valle, C.; Hermenejildo, J.; Hermo-Argibay, A.; Salazar, J.D.; Garrido, M.; Navajas-Porras, B.; Sáez, G.; Morillas, C.; Bañuls, C. The Impact of Weight Loss on Inflammation, Oxidative Stress, and Mitochondrial Function in Subjects with Obesity. Antioxidants 2024, 13, 870. https://doi.org/10.3390/antiox13070870

26. Shao, Q., Ndzie Noah, M.L., Golubnitschaja, O. et al. Mitochondrial medicine: “from bench to bedside” 3PM-guided concept. EPMA Journal (2025). https://doi.org/10.1007/s13167-025-00409-4

27. Chang P-S, Chou H-H, Lai T-J, Yen C-H, Pan J-C and Lin P-T (2022) Investigation of coenzyme Q10 status, serum amyloid-β, and tau protein in patients with dementia. Front. Aging Neurosci. 14:910289. doi: 10.3389/fnagi.2022.910289

28. Sood B, Patel P, Keenaghan M. Coenzyme Q10. 2024 Jan 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30285386.

29. Szewczyk K, Bryś J, Brzezińska R, Górnicka M. Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients. 2025 Jan 23;17(3):408. doi: 10.3390/nu17030408.

30. Almoraie, N.M.; Shatwan, I.M. The Potential Effects of Dietary Antioxidants in Obesity: A Comprehensive Review of the Literature. Healthcare 2024, 12, 416. https://doi.org/10.3390/healthcare12040416

31. Bird JK, Feskens EJ, Melse-Boonstra A. A Systematized Review of the Relationship Between Obesity and Vitamin C Requirements. Curr Dev Nutr. 2024 Mar 29;8(5):102152. doi: 10.1016/j.cdnut.2024.102152. 

32. Wilson, R.B.; Liang, Y.; Kaushal, D.; Carr, A. Molecular Pharmacology of Vitamin C and Relevance to Health and Obesity—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 7523. https://doi.org/10.3390/ijms25147523

33. Liu Z, Zheng L. Associations between SII, SIRI, and cardiovascular disease in obese individuals: a nationwide cross-sectional analysis. Front Cardiovasc Med. 2024 Aug 22;11:1361088. doi: 10.3389/fcvm

34. Li J, Zhao S, Zhang X, Fan M, Wan J, Lin R, Fan F, Liu G, Guan S, Liu A. Association of Systemic Inflammatory Response Index with the cardiometabolic multimorbidity among US adults: A population-based study. Brain Circ. 2025 Mar 21;11(1):39-47. doi: 10.4103/bc.bc_32_24.

35. Zhou Y, Wang Y, Wu T, Zhang A, Li Y. Association between obesity and systemic immune inflammation index, systemic inflammation response index among US adults: a population-based analysis. Lipids Health Dis. 2024 Aug 10;23(1):245. doi: 10.1186/s12944-024-02240-8.

36. Zhao Q, Liu X, Xu J, Rao X, Liu M. Association of systemic immunity-inflammation index with type 2 diabetes and insulin resistance in NHANES 2005-2018. Sci Rep. 2024 Dec 3;14(1):30133. doi: 10.1038/s41598-024-79763-8. Erratum in: Sci Rep. 2025 Mar 18;15(1):9323. doi: 10.1038/s41598-025-94101-2.

37. Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev. 2024 Aug;99:102402. doi: 10.1016/j.arr.2024.102402.

38. Guerrero-Carrasco M, Targett I, Olmos-Alonso A, Vargas-Caballero M, Gomez-Nicola D. Low-grade systemic inflammation stimulates microglial turnover and accelerates the onset of Alzheimer's-like pathology. Glia. 2024 Jul;72(7):1340-1355. doi: 10.1002/glia.24532.

39. Dhurandhar Y, Tomar S, Das A, Prajapati JL, Singh AP, Bodake SH, Namdeo KP. Chronic inflammation in obesity and neurodegenerative diseases: exploring the link in disease onset and progression. Mol Biol Rep. 2025 Apr 25;52(1):424. doi: 10.1007/s11033-025-10509-z.

40. Yu Y, Tan T, Yang W, Xu Z, Liu Y. Association between the systemic immune-inflammation index and obesity among adults: Insights from the NHANES 2017-2018. PLoS One. 2024 Aug 8;19(8):e0308288. doi: 10.1371/journal.pone.0308288.

41. Qiu L, Ren Y, Li J, Li M, Li W, Qin L, Ning C, Zhang J, Gao F. Association of systemic immune inflammatory index with obesity and abdominal obesity: A cross-sectional study from NHANES. Nutr Metab Cardiovasc Dis. 2024 Oct;34(10):2409-2419. doi: 10.1016/j.numecd.2024.06.003.

42. He L, Zhang L, Fu S, Wei S, Liu Y. Association Between Different Inflammatory Markers and Generalized Abdominal Obesity: A Cross-Sectional Study. Obes Surg. 2024 Sep;34(9):3372-3381. doi: 10.1007/s11695-024-07415-x. 

43. Liao Y, Zhou K, Lin B, Deng S, Weng B, Pan L. Associations between systemic immune-inflammatory index and visceral adipose tissue area: results of a national survey. Front Nutr. 2025 Jan 16;11:1517186. doi: 10.3389/fnut.2024.1517186. 

44. Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal. 2025 Jan 11;23(1):20. doi: 10.1186/s12964-024-02025-7.

45. Chen C, Tang P, Zhu W. Systemic immune-inflammation index mediates the association between abdominal obesity and serum klotho levels. Sci Rep. 2025 Feb 4;15(1):4205. doi: 10.1038/s41598-025-88015-2

46. Chen R, Yao Y, Yu J, Yin C, Zhang D. Serum klotho concentration, vitamin D concentration and cardiovascular diseases risk: Evidence from the NHANES database 2007-2016. Nutr Metab Cardiovasc Dis. 2025 Jun;35(6):103905. doi: 10.1016/j.numecd.2025.103905.

47. Ariadel-Cobo DG, Estébanez B, González-Arnáiz E, García-Pérez MP, Rivera-Viloria M, Pintor de la Maza B, Barajas-Galindo DE, García-Sastre D, Ballesteros-Pomar MD, Cuevas MJ. Influence of Klotho Protein Levels in Obesity and Sarcopenia: A Systematic Review. Int J Mol Sci. 2025 Feb 23;26(5):1915. doi: 10.3390/ijms26051915.

48. Gong L, Xu J, Zhuang Y, Zeng L, Peng Z, Liu Y, Huang Y, Chen Y, Huang F, Piao C. Association between adult body shape index and serum levels of the anti-aging protein Klotho in adults: a population-based cross-sectional study of the NHANES from 2007 to 2016. Front Endocrinol (Lausanne). 2025 Feb 11;16:1424350. doi: 10.3389/fendo.2025.1424350.

49. Liang Y, Liu Y, Tan Q, Zhou K, Wu Y, Yu L. Systemic immune-inflammation mediates the association between Klotho protein and metabolic syndrome: findings from a large-scale population-based study. Lipids Health Dis. 2024 Nov 5;23(1):360. doi: 10.1186/s12944-024-02339-y.

50. Du R, Tang X, Guan L, Lai Y, Xiang H, Huang W. Central adiposity and α-klotho: inflammatory mechanisms underlying aging biomarkers related to body roundness index. Lipids Health Dis. 2025 Apr 10;24(1):136. doi: 10.1186/s12944-025-02541-6. 

51. Santos, T.W.d.; Pereira, Q.C.; Fortunato, I.M.; Oliveira, F.d.S.; Alvarez, M.C.; Ribeiro, M.L. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024, 16, 3621. https://doi.org/10.3390/nu16213621

52. Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep. 2024 Sep;13(3):500-515. doi: 10.1007/s13668-024-00555-7. 

53. DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart. 2022 Dec;9(2):e002171. doi: 10.1136/openhrt-2022-002171. 

54. D'Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer's disease. Ageing Res Rev. 2025 May;107:102713. doi: 10.1016/j.arr.2025.102713.

55. Laouali N, Berrandou T, A Rothwell J, Shah S, El Fatouhi D, Romana Mancini F, Boutron-Ruault MC, Fagherazzi G. Profiles of Polyphenol Intake and Type 2 Diabetes Risk in 60,586 Women Followed for 20 Years: Results from the E3N Cohort Study. Nutrients. 2020 Jun 29;12(7):1934. doi: 10.3390/nu12071934.

56. Armani, A.; Feraco, A.; Camajani, E.; Gorini, S.; Lombardo, M.; Caprio, M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022, 11, 3996. https://doi.org/10.3390/cells11243996

57. Zamora-Ros R, et Al. Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr. 2016 Jun;55(4):1359-75. doi: 10.1007/s00394-015-0950-x. 

58. Wisnuwardani, R.W., De Henauw, S., Androutsos, O. et al. Estimated dietary intake of polyphenols in European adolescents: the HELENA study. Eur J Nutr 58, 2345–2363 (2019). https://doi.org/10.1007/s00394-018-1787-x

59. Huang Q, Braffett BH, Simmens SJ, Young HA, Ogden CL. Dietary Polyphenol Intake in US Adults and 10-Year Trends: 2007-2016. J Acad Nutr Diet. 2020 Nov;120(11):1821-1833. doi: 10.1016/j.jand.2020.06.016.

60. Biancaniello EC, Tiessen S, Hartman B, Battram DS. Dietary polyphenol intake in the Canadian population: Findings from the 2015 Canadian Community Health Survey-Nutrition. Can J Public Health. 2024 Apr;115(2):315-331. doi: 10.17269/s41997-023-00845-7.

61. Xu, Y.; Fang, M.; Li, X.; Wang, D.; Yu, L.; Ma, F.; Jiang, J.; Zhang, L.; Li, P. Contributions of Common Foods to Resveratrol Intake in the Chinese Diet. Foods 2024, 13, 1267. https://doi.org/10.3390/foods13081267

62. Li-Xue Zhang, Chang-Xing Li, Mohib Ullah Kakar, Muhammad Sajjad Khan, Pei-Feng Wu, Rai Muhammad Amir, Dong-Fang Dai, Muhammad Naveed, Qin-Yuan Li, Muhammad Saeed, Ji-Qiang Shen, Shahid Ali Rajput, Jian-Hua Li, Resveratrol (RV): A pharmacological review and call for further research, Biomedicine & Pharmacotherapy, Vol. 143, 2021,https://doi.org/10.1016/j.biopha.2021.112164.

63.Drago, L., Ciprandi, G., Brindisi, G., Brunese, F.P., Dinardo, G., Gori, A., Indolfi, C., Naso, M., Tondina, E., Trincianti, C., Varricchio, A., Zicari, A. M., Ullah, H., & Daglia, M., & the Nutraceutical, Medical Device Task Force of the Italian Society of Pediatric Allergy, Immunology (SIAIP). (2024). Certainty and uncertainty in the biological activities of resveratrol. Food Frontiers, 5, 849–854. https://doi.org/10.1002/fft2.375

64. Szymkowiak I, Marcinkowska J, Kucinska M, Regulski M, Murias M. Resveratrol Bioavailability After Oral Administration: A Meta-Analysis of Clinical Trial Data. Phytother Res. 2025 Jan;39(1):453-464. doi: 10.1002/ptr.8379.

65. Brown K, Theofanous D, Britton RG, Aburido G, Pepper C, Sri Undru S, Howells L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int J Mol Sci. 2024 Jan 6;25(2):747. doi: 10.3390/ijms25020747.

66. Pezzino S, Sofia M, Mazzone C, Litrico G, Greco LP, Gallo L, La Greca G, Latteri S. Innovative treatments for obesity and NAFLD: A bibliometric study on antioxidants, herbs, phytochemicals, and natural compounds. Heliyon. 2024 Aug 8;10(16):e35498. doi: 10.1016/j.heliyon.2024.e35498.

67. Makhtoomi M, Shateri Z, Mashoufi A, Nouri M, Honarvar B, Keshani P. The association between dietary polyphenol intake and the odds of metabolic syndrome. Sci Rep. 2024 Oct 26;14(1):25559. doi: 10.1038/s41598-024-77335-4.

68. Romain, C.; Chung, L.H.; Marín-Cascales, E.; Rubio-Arias, J.A.; Gaillet, S.; Laurent, C.; Morillas-Ruiz, J.M.; Martínez-Rodriguez, A.; Alcaraz, P.E.; Cases, J. Sixteen Weeks of Supplementation with a Nutritional Quantity of a Diversity of Polyphenols from Foodstuff Extracts Improves the Health-Related Quality of Life of Overweight and Obese Volunteers: A Randomized, Double-Blind, Parallel Clinical Trial. Nutrients 2021, 13, 492. https://doi.org/10.3390/nu13020492

69. Rao PP. Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives. Curr Nutr Rep. 2025 Jan 14;14(1):17. doi: 10.1007/s13668-025-00611-w.

70. Molani-Gol R, Rafraf M. Effects of resveratrol on the anthropometric indices and inflammatory markers: an umbrella meta-analysis. Eur J Nutr. 2024 Jun;63(4):1023-1040. doi: 10.1007/s00394-024-03335-9. 

71. Özyalçın B, Sanlier N. Antiobesity pathways of pterostilbene and resveratrol: a comprehensive insight. Crit Rev Food Sci Nutr. 2024 Nov;64(31):11428-11436. doi: 10.1080/10408398.2023.2238319.

72. Terzo, M.; Iantomasi, M.; Tsiani, E. Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies. Molecules 2024, 29, 5359. https://doi.org/10.3390/molecules29225359

73. Gu X, Wang X, Wang S, Shen Y, Lu L. Composite Dietary Antioxidant Index is inversely associated with visceral adipose tissue area among U.S. adults: A cross-sectional study. Nutr Res. 2024 Apr;124:13-20. doi: 10.1016/j.nutres.2024.01.011.

74. Wang Z, Wang Q, Tang F, Zhong S. Composite dietary antioxidant index and obesity among U.S. adults in NHANES 2007-2018. Sci Rep. 2024 Nov 15;14(1):28102. doi: 10.1038/s41598-024-78852-y. 

75. Mérida DM, Vitelli-Storelli F, Moreno-Franco B, Rodríguez-Ayala M, López-García E, Banegas JR, Rodríguez-Artalejo F, Guallar-Castillón P. Polyphenol intake and mortality: A nationwide cohort study in the adult population of Spain. Clin Nutr. 2023 Jul;42(7):1076-1085. doi: 10.1016/j.clnu.2023.05.020. 

76. Zhu P, Jin Y, Sun J, Zhou X. The efficacy of resveratrol supplementation on inflammation and oxidative stress in type-2 diabetes mellitus patients: randomized double-blind placebo meta-analysis. Front Endocrinol (Lausanne). 2025 Jan 13;15:1463027. doi: 10.3389/fendo.2024.1463027.

77. Martínez-Esquivias F, Guzmán-Flores JM, Reyes-Chaparro A, Sánchez-Enríquez S, Anaya-Esparza LM. Network Pharmacology, Molecular Docking, and Molecular Dynamics Study to Explore the Effect of Resveratrol on Type 2 Diabetes. J Cell Biochem. 2025 Jan;126(1):e30655. doi: 10.1002/jcb.30655.

78. Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients. 2025 Jan 13;17(2):275. doi: 10.3390/nu17020275.

79. Zhu L, Yang M, Fan L, Yan Q, Zhang L, Mu P, Lu F. Interaction between resveratrol and SIRT1: role in neurodegenerative diseases. Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan;398(1):89-101. doi: 10.1007/s00210-024-03319-w. 

80. Tosatti JAG, Fontes AFDS, Caramelli P, Gomes KB. Effects of Resveratrol Supplementation on the Cognitive Function of Patients with Alzheimer's Disease: A Systematic Review of Randomized Controlled Trials. Drugs Aging. 2022 Apr;39(4):285-295. doi: 10.1007/s40266-022-00923-4.

81. Street, M.E.; Casadei, F.; Di Bari, E.R.; Ferraboschi, F.; Montani, A.G.; Shulhai, A.-M.; Esposito, S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 1: Metabolic Changes. Nutrients 2025, 17, 1630. https://doi.org/10.3390/nu17101630

82. Fatima S, Khan DA, Aamir M, Pervez MA, Fatima F. δ-Tocotrienol in Combination with Resveratrol Improves the Cardiometabolic Risk Factors and Biomarkers in Patients with Metabolic Syndrome: A Randomized Controlled Trial. Metab Syndr Relat Disord. 2023 Feb;21(1):25-34. doi: 10.1089/met.2022.0052.

83. Cai Y, Chen Q. Resveratrol: A Narrative Review Regarding Its Mechanisms in Mitigating Obesity-Associated Metabolic Disorders. Phytother Res. 2025 Feb;39(2):999-1019. doi: 10.1002/ptr.8416.

84. Yu X, Jia Y, Ren F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front Nutr. 2024 Jun 12;11:1408651. doi: 10.3389/fnut.2024.1408651. 

85. Zhang S, Kiarasi F. Therapeutic effects of resveratrol on epigenetic mechanisms in age-related diseases: A comprehensive review. Phytother Res. 2024 May;38(5):2347-2360. doi: 10.1002/ptr.8176.

86. Portillo Siqueiros EY, Santellano-Estrada E, Flores Villalobos MÁ, Roacho Soto MG, Martínez Flórez S. Efectos del zinc y resveratrol como moduladores de la respuesta a la leptina en adultos con obesidad [Effects of zinc and resveratrol as modulators of leptin response in adults with obesity]. Nutr Hosp. 2024 Oct 31;41(5):968-975. Spanish. doi: 10.20960/nh.05177. 

87. Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler. 2024 Sep;13(3):306-327. doi: 10.12997/jla.2024.13.3.306. 

88. Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol. 2025 May;62(5):5579-5608. doi: 10.1007/s12035-024-04608-4.

89. Zhao Y, Ren J, Chen W, Gao X, Yu H, Li X, Zheng Y, Yang J. Effects of polyphenols on non-alcoholic fatty liver disease: a case study of resveratrol. Food Funct. 2025 Apr 14;16(8):2926-2946. doi: 10.1039/d4fo04787g.

90. Mini-Review Resveratrolo Peri- Post-Menopausa https://www.mitochon.it/peri-e-post-menopausa-novita-sui-vantaggi-dellintegrazionealimentare-mirata/

91. Mini-Review Resveratrolo effetti neuroprotettivi https://www.mitochon.it/cervello-e-cognitivita-effetti-neuroprotettivi-del-resveratrolo/

92. Mini-Review Vitamine complesso B - microbiota https://www.mitochon.it/le-vitamine-del-gruppo-b-cosa-ce-di-nuovo-parte-2/

93. Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci. 2024 Aug 22;25(16):9118. doi: 10.3390/ijms25169118.

94. Wang P, Wang R, Zhao W, Zhao Y, Wang D, Zhao S, Ge Z, Ma Y, Zhao X. Gut microbiota-derived 4-hydroxyphenylacetic acid from resveratrol supplementation prevents obesity through SIRT1 signaling activation. Gut Microbes. 2025 Dec;17(1):2446391. doi: 10.1080/19490976.2024.2446391.

95. Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells. 2024 Jul 3;13(13):1145. doi: 10.3390/cells13131145. 

96. Mao T, Zhang Y, Kaushik R, Mohan MS. Effects of polyphenols on gut microbiota and inflammatory markers in individuals with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2024 Dec 3:1-18. doi: 10.1080/10408398.2024.2436644.

97. Dong Z, Yu P, Li J, Zhou H, Li R, Wang S, Yang G, Nie Y, Liu L, Bian X, Jiang W, Gu Y, Yang Y. Discovery of an ene-reductase initiating resveratrol catabolism in gut microbiota and its application in disease treatment. Cell Rep. 2025 Apr 22;44(4):115517. doi: 10.1016/j.celrep.2025.115517.

98. Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients. 2025 Jan 13;17(2):275. doi: 10.3390/nu17020275.

99. Al-Regaiey, K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 21, 76 (2024). https://doi.org/10.1186/s12979-024-00481-w

100. Hongyan Liu, Xue Guo, Kexin Jiang, Boshan Shi, Lingyi Liu, Ruyan Hou, Guijie Chen, Mohamed A. Farag, Ning Yan, Lianliang Liu, Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis, Food Chemistry, Volume 446, 2024, https://doi.org/10.1016/j.foodchem.2024.138739.

101. Aloo SO, Ofosu FK, Kim NH, Kilonzi SM, Oh DH. Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel). 2023 Feb 8;12(2):416. doi: 10.3390/antiox12020416.

102. Serna, A., Marhuenda, J., Arcusa, R. et al. Effectiveness of a polyphenolic extract (Lippia citriodora and Hibiscus sabdariffa) on appetite regulation in overweight and obese grade I population: an 8-week randomized, double-blind, cross-over, placebo-controlled trial . Eur J Nutr 61, 825–841 (2022). https://doi.org/10.1007/s00394-021-02678-x

103. Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Villegas-Ochoa, M.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Viuda-Martos, M.; González-Aguilar, G.A. Consumption of Plant-Derived Phenolic Acids Modulates Hunger and Satiety Responses Due to Chemical Interactions with Enteroendocrine Mediators. Foods 2024, 13, 3640. https://doi.org/10.3390/foods13223640

104. Sharebiani, H.; Mokaram, M.; Mirghani, M.; Fazeli, B.; Stanek, A. The Effects of Antioxidant Supplementation on the Pathologic Mechanisms of Metabolic Syndrome and Cardiovascular Disease Development. Nutrients 2024, 16, 1641. https://doi.org/10.3390/nu16111641

105. Panahi, Y.; Ostadmohammadi, V.; Raygan, F.; Sharif, M.R.; Sahebkar, A. The effects of N-acetylcysteine administration on metabolic status and serum adiponectin levels in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. J. Funct. Foods 2022, 99, 105299.

106. Goutzourelas N, Orfanou M, Charizanis I, Leon G, Spandidos DA, Kouretas D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp Ther Med. 2018 Aug;16(2):635-642. doi: 10.3892/etm.2018.6204.

107. Mini-Review Sindrome Metabolica https://www.mitochon.it/sindrome-metabolica-2024-dalle-origini-molecolari-al-ruolo-dei-nutraceutici/

108. Mini-Review Steatosi Epatica https://www.mitochon.it/steatosi-epatica-novita-sui-meccanismi-dinsorgenza-ed-il-contributo-degli-antiossidanti/

109. Mini-Review Glutatione / NAC https://www.mitochon.it/glutatione-perche-proteggere-le-sue-concentrazioni-cellulari-nellantiaging/

110. Mini-Review studio pilota Mitofast https://www.mitochon.it/mitofast-nuovi-ed-importanti-risultati-da-uno-studio-clinico-preliminare/

111. Theodosis-Nobelos, P.; Rekka, E.A. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024, 16, 2740. https://doi.org/10.3390/nu16162740

112. Szewczyk, K.; Bryś, J.; Brzezińska, R.; Górnicka, M. Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients 2025, 17, 408. https://doi.org/10.3390/nu17030408

113. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Vitamin E. [Updated 2025 Apr 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548283/

114. Wan R, Su Y, Zhu M, Huang Y. The association between blood vitamin E and blood pressure in an adult population with and without diabetes mellitus. Front Endocrinol (Lausanne). 2024 Nov 6;15:1431293. doi: 10.3389/fendo.2024.1431293.

115. Mini - Review Vitamina E ruolo sistemico e dermocosmesi https://www.mitochon.it/vitamina-e-aggiornamenti-generali-e-ruolo-nei-trattamenti-antiaging-della-pelle/

116. Christimann G, Rocha G, Sattler JAG. Bioactive compounds and dietary patterns in Alzheimer's disease. J Alzheimers Dis. 2025 Apr;104(3):597-610. doi: 10.1177/13872877251319048.

117. Yu X, Zhu J, Xu Z. Association of Dietary Vitamin C Intake with the Risk of Metabolic Syndrome Among Adults: NHANES 2007-2018. Metab Syndr Relat Disord. 2025 Apr;23(3):146-154. doi: 10.1089/met.2024.0149.

118. Zhou L, Wang T, Chen D, Cheng G, Li W, Cai X, Liao J, Bao W, Rong S. Association of serum vitamin C concentrations with Alzheimer's disease mortality among U.S. adults. Nutr Neurosci. 2025 May;28(5):622-630. doi: 10.1080/1028415X.2024.2403900.

119. Mini-Review Vitamina C https://www.mitochon.it/vitamina-c-il-contributo-per-lanti-aging-cutaneo/

120. Mini-Review Vitamine complesso B - microbiota https://www.mitochon.it/le-vitamine-del-gruppo-b-cosa-ce-di-nuovo-parte-2/

121. Mini-Review Vitamina B12 - Acido Folico https://www.mitochon.it/vitamina-b12-e-acido-folico-cosa-ce-di-nuovo-parte-1/

122. Mini-Review Vitamina B12 https://www.mitochon.it/vitamina-b12-nelle-strategie-antiaging/

123. Mini-Review Acido Folico https://www.mitochon.it/acido-folico-dalla-clinica-allantiaging-attualita-2024/

124. Fogacci F, Pizzi C, Bergamaschi L, Di Micoli V, Cicero AFG. Folic acid and plasma lipids: Interactions and effect of folate supplementation. Curr Probl Cardiol. 2024 Jun;49(6):102539. doi: 10.1016/j.cpcardiol.2024.102539.

125. Jerab, D.; Blangero, F.; da Costa, P.C.T.; de Brito Alves, J.L.; Kefi, R.; Jamoussi, H.; Morio, B.; Eljaafari, A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025, 17, 1253. https://doi.org/10.3390/nu17071253

126. Chon JE, Semnani-Azad Z, Lai KZH, Connelly PW, Retnakaran R, Harris SB, Metherel AH, Jenkins DJA, Bazinet RP, Hanley AJ. Omega-3 Polyunsaturated Fatty Acids And Adipose Tissue Inflammation: Longitudinal Analysis in the PROMISE Cohort. J Clin Endocrinol Metab. 2025 Apr 22;110(5):1324-1333. doi: 10.1210/clinem/dgae445.

127. McTavish PV, Mutch DM. Omega-3 fatty acid regulation of lipoprotein lipase and FAT/CD36 and its impact on white adipose tissue lipid uptake. Lipids Health Dis. 2024 Nov 20;23(1):386. doi: 10.1186/s12944-024-02376-7. 

128. Joerg R, Itariu BK, Amor M, Bilban M, Langer F, Prager G, Joerg F, Stulnig TM. The effect of long-chain n-3 PUFA on liver transcriptome in human obesity. Prostaglandins Leukot Essent Fatty Acids. 2025 Apr;204:102663. doi: 10.1016/j.plefa.2024.102663. 

129. Dludla, P.V.; Ziqubu, K.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Nkambule, B.B.; Basson, A.K.; Pheiffer, C.; Tiano, L.; Kengne, A.P. Dietary Supplements Potentially Target Plasma Glutathione Levels to Improve Cardiometabolic Health in Patients with Diabetes Mellitus: A Systematic Review of Randomized Clinical Trials. Nutrients 2023, 15, 944. https://doi.org/10.3390/nu15040944

130. DiNicolantonio JJ, McCarty MF, O'Keefe JH. Coenzyme Q10 deficiency can be expected to compromise Sirt1 activity. Open Heart. 2022 Mar;9(1):e001927. doi: 10.1136/openhrt-2021-001927.

131. Casagrande, D.; Waib, F.F.; Júnior, J.E.; Jordão Júnior, A.A. Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD. Obesities 2024, 4, 106-117. https://doi.org/10.3390/obesities4020011

132. Zhang, P., Chen, K., He, T. et al. Coenzyme Q10 supplementation improves adipokine profile in dyslipidemic individuals: a randomized controlled trial. Nutr Metab (Lond) 19, 13 (2022). https://doi.org/10.1186/s12986-022-00649-5

133. Zhihao Liu, Zezhong Tian, Dan Zhao, Ying Liang, Suming Dai, Meitong Liu, Shanshan Hou, Xiaoxi Dong, Zhaxinima, Yan Yang, Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials, The Journal of Clinical Endocrinology & Metabolism, Volume 108, Issue 1, January 2023, Pages 232–249, https://doi.org/10.1210/clinem/dgac585

134. Patiño-Cardona S, Garrido-Miguel M, Pascual-Morena C, Berlanga-Macías C, Lucerón-Lucas-Torres M, Alfaro-González S, Martínez-García I. Effect of Coenzyme Q10 Supplementation on Lipid and Glycaemic Profiles: An Umbrella Review. J Cardiovasc Dev Dis. 2024 Nov 25;11(12):377. doi: 10.3390/jcdd11120377.

135. Zhao M, Tian Z, Zhao D, Kuang H, Liang Y, Liu Z, Xu Y, Hou S, Zhong Z and Yang Y (2024) Associations between dietary coenzyme Q10 intake and lipid profiles in adults: a national cross-sectional study. Front. Nutr. 11:1472002. doi: 10.3389/fnut.2024.1472002

136. Mini-Review Coenzima Q10 2025 https://www.mitochon.it/il-coenzima-q10-novita-per-luso-mirato-nellantiaging-cutaneo-e-per-gli-effetti-sistemici/?v=0d149b90e739

137. Mini-Review Coenzima Q10 https://www.mitochon.it/coenzima-q10-anti-aging-mitocondriale-per-la-pelle/

138. Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol Activates Antioxidant Protective Mechanisms in Cellular Models of Alzheimer’s Disease Inflammation. Antioxidants 2024, 13, 177. https://doi.org/10.3390/antiox13020177

139. Bejenaru, L.E.; Biţă, A.; Belu, I.; Segneanu, A.-E.; Radu, A.; Dumitru, A.; Ciocîlteu, M.V.; Mogoşanu, G.D.; Bejenaru, C. Resveratrol: A Review on the Biological Activity and Applications. Appl. Sci. 2024, 14, 4534. https://doi.org/10.3390/app14114534

140. Teodora Constantinescu, Alin Grig Mihis, Resveratrol as a privileged molecule with antioxidant activity, Food Chemistry Advances, Vol. 3, 2023, https://doi.org/10.1016/j.focha.2023.100539.

141. Mini-Review Pelle - Infiammazione cronica 2025 https://www.mitochon.it/la-pelle-come-scudo-contro-linfiammazione-cronica-dellorganismo/?v=0d149b90e739

142. Mini - Review Benessere e salute mitocodriale https://www.mitochon.it/obiettivo-benessere-partendo-dalla-salute-dei-mitocondri/

143. Mini-Review Sovrappenso / Obesità - Resveratrolo - Antiossidanti 2025 https://www.mitochon.it/sovrappeso-obesita-quale-contributo-dal-resveratrolo-ed-altri-antiossidanti/?v=0d149b90e739


© Riproduzione riservata

Commenti